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theorem on the commodity space ca(K). The first main topic of this paper is to
explore this issue. In particular, we prove the existence of competitive equilibria for
LIEs with the commodity spaces ℓ∞ and ca(K).

We believe that our choice of the commodity spaces, ℓ∞ and ca(K), is justified
in that these spaces have clear and definitive interpretations. Moreover, the models
of these spaces have common mathematical characters. In particular, those authors
who studied the ℓ∞ or ca(K) spaces all worked with the weak* topology on the
space; hence, the resource condition in terms of the Gelfand integral. In addition,
they set the price space as the predual of the commodity space. This is in contrast
with [35, 46] in which the price space is simply taken as the norm dual of the
commodity space.

Aumann’s fundamental observation is that the convexity of the preferences is
unnecessary for finite dimensional models. The first problem to generalize his re-
sult to infinite dimensional settings is that we need the convexity in the infinite
dimensional settings. Indeed, all of the aforementioned authors assumed the con-
vexity of preferences or similar assumptions1. The convexity assumptions obviously
weaken the impact of Aumann’s classical result and reveal the “convexifying ef-
fect” of large numbers of the economic agents that is a result of Fatou’s lemma
or Liapunov’s convexity theorem, which are known to fail on the infinite dimen-
sional spaces. Therefore, we must assume the convexity directly or determine some
conditions that recover the missing convexity.

Rustichini and Yannelis [55] was probably the first paper to address the equi-
librium existence problem for a model on an infinite dimensional commodity space
without the convexity of preferences. They concluded that to obtain any Fatou-type
theorem (lemma), one must have “many more agents than commodities.” Accord-
ing to Mertens [45, p.189], this “many more agents than commodities” thesis is
seemingly at first addressed by Aumann himself in the context of the core equiva-
lence theorem2; hence we call it Aumann’s thesis. Aumann’s thesis in the sense of
Rustichini–Yannelis is stated as follows. Let AE = {A ∩ E| A ∈ A} be the sub-σ
algebra of A restricted to E ∈ A. Recall that for any (real) vector space, an alge-
braic Hamel basis exists. The cardinality of any Hamel basis of a vector space L is
the same, and we denote it as dim(L). Rustichini and Yannelis proposed the next
condition:

(RY): For any E ∈ A with λ(E) > 0, dim(L ∞
E (λ)) > dim(L),

where L ∞
E (λ) is the space of essentially bounded functions on E and L is the com-

modity space. Note that this condition involves both consumers and commodities
spaces. Podczeck criticized this condition that “one may wish to interpret an atom-
less measure spaces as an idealization of a large but finite number of them. From
this point of view, it is preferable to keep a measure space of agents ‘small’ ([50],
p.386).”

1Noguchi assumed that a commodity vector does not belong to the convex hull of its preferred
set.

2Aumann was indeed correct, see [51, 65].
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In the present paper, we propose that Aumann’s thesis is manifestly represented
when we set a saturated (or super-atomless3) measure space of consumers. A measure
space (A,A, λ) is saturated if its subalgebra AE are uncountable generated for
any E ∈ A with λ(E) > 0 modulo null sets. Aumann’s thesis is now embodied
intrinsically within the measure space of consumers rather than a condition imposed
on it from outside. It is realized naturally in our models.

As Podczeck [52] indicated, the saturated measure space itself does not necessarily
have an extraordinarily large cardinality. This can be explained by the nontrivial
Loeb measure spaces (Keisler and Sun [21]) that are important examples of the
saturated measure spaces. It is possible for some nontrivial Loeb measure spaces to
have the cardinality of the continuum; hence, they can be identified with the unit
interval on the real line.

On the saturated measure space, we can prove Fatou’s lemma for the Gelfand
integrable maps [14, 30]. This is the key result for proving the existence of equilibria
in the spaces ℓ∞ and ca(K) without the convexity of preferences. Moreover, the
saturation is known to be equivalent with the convexity of the Gelfand integral of
correspondences [52, 57]. We use it in our proofs of core equivalence theorems for
those spaces.

There is another formalism of large economies that we call the large distribution-
alized economy (LDE). The LDE was invented by Hart, Hildenbrand, and Kohlberg
[16] in which the economy was defined as a probability measure µ on the space of
agents’ characteristics P × Ω. The allocation of this economy is also defined as a
probability measure ν on X×P×Ω, where X is a consumption set that is assumed
to be identical among all consumers. The marginal distribution of ν on P × Ω is
required to coincide with µ for consistency. We call the competitive equilibrium of
the LDE the distributive equilibrium. Their purpose of these notions of economy and
equilibria is to introduce collective or macroeconomic perspectives into the general
equilibrium theory:

If the set A of agents is small (e.g., #A = 3), then the description of
an economy as an assignment a 7→ (≿a, ea) of agents to character-
istics seems to be the appropriate one. However, when the set A is
large (e.g., #A = 1000), one is tempted to give up this individualis-
tic description and to replace it by a more collective view, namely to
consider the distribution of the mapping E [16, pp. 159–160, italics
by Hart–Hildebrand–Kohlberg].

They also recognized that this equilibrium concept is not suitable for core equilib-
rium:

... [I]f an economy is described by a distribution of agents’ char-
acteristics only, then it is not clear how the core of that economy
should be defined. The concepts of ‘coalition’ and ‘to improve upon’
require the individualistic description of an economy as a mapping
which assigns to every individual agent his characteristics [ibid.].

3Super-atomless was coined by Podczeck [52].
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The LDE formalism was successfully applied to the model of the space ca(K) by
Mas-Colell [41] and Jones [19]. They could prove the existence of distributive equi-
libria without assuming the convexity of preferences because neither Fatou’s lemma
nor Liapunov’s theorem is used in the proof for the existence of these equilib-
ria. Mas-Colell also proved the core equivalence by invoking the (individualistic
or mapping) representation for distributive equilibrium, where a pair of measur-
able mappings ξ : A → X and E : A → P × Ω is called a representation4 of ν if
ν = (ξ, E)∗λ ≡ λ◦(ξ, E)−1. Their observations were further confirmed for the model
of ℓ∞ by [59].

The saturated measure space also casts light on the relationship between the
allocative and distributive equilibria. When X ×P ×Ω is a complete and separable
metric space, the LDE µ and its distributive equilibrium ν have a representation
of E and (ξ, E ′), respectively. We must notice that E and E ′ are not necessarily
equal; hence, the important question is the following. Let an economy µ and its
equilibrium ν be given. For each representation E of µ, do we have an equilibrium
allocation map ξ such that (ξ, E) represents ν? Generally, the answer is no, as
suggested by Mas-Colell;

While given an economy µ, we can prove the existence of an equi-
librium distribution ν (and therefore of an equilibrium allocation
ξ : A → X for some representation of µ, E : A → P × Ω), it is
unlikely that given a representation E : A → P × Ω, there is an
allocation ξ : A → X that is an equilibrium with respect to E [41,
p. 273 with notations changed].

However, we obtain an affirmative answer when the measure space is saturated
(Theorem 4.4). Hence, the distributive equilibrium ν does not lose any individual
information when one works with the saturated economies. In addition, the alloca-
tive and the distributive equilibria are equivalent in a strong sense for economies
with the saturated measure space of consumers. We discuss more the realization of
the distributive equilibria in Section 4.

The paper is organized as follows. Section 2 is devoted to mathematical pre-
liminaries. Its aim is twofold. The first is to fix our mathematical symbols and
notations. The second is to collect all mathematical results used in the text for our
readers’ convenience and enable the paper to be self-contained. In particular, the
definition of saturated measure spaces and a Fatou’s lemma for the Gelfand integral
on them that plays a key role in the proof of the existence theorems are presented.
However, many of the results are standard. Hence, experts can skip this section.

In Section 3, we present our basic model that includes exchange economies with
the commodity spaces ℓ∞ and ca(K). The consumption set of the basic model
is assumed to contain a finite dimensional and unbounded part for relaxing the
interiority assumptions on the initial endowments that are commonly assumed in
the literature. Indeed, [6, 35, 46, 47, 55, 60, 61] all assumed that individual initial
endowments belong to the (norm) interior of the consumption set. Obviously, such

4Similarly, a mapping E : A → P × Ω is a representation of µ, or E represents µ if µ = E∗λ ≡
λ ◦ E−1. Notice that representations are not generally unique.
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an assumption is very strong in the economies with a continuum of traders5. We
dispense with the interiority assumption by making use of the monotonicity of
preferences. As is well known, these remarks do not apply for models on ca(K) in
which all consumers are assumed to have the nonnegative orthant of ca(K) as their
common consumption set. See also Section 5.

In Section 4, we discuss the relationships between large individualized and dis-
tribuitionalized economies. The first issue is the realization of distributive equilibria
explained previously. A distributive equilibrium of a distributionalized economy µ
is said to be realizable if for every individualized economy E that represents µ, an
equilibrium allocation ξ of E represents ν or ν = (ξ, E)∗λ. As stated, Theorem 4.4
shows that distributive equilibria are realizable if the underlying measure space is
saturated. This result has been already obtained and applied in specific models
[31, 62]. We present and discuss it in a general framework. The second issue to be
explored is the symmetricity of equilibria that was pioneered in the noncooperative
game theory [32, 42]. Intuitively, a distributive equilibrium is called symmetric if
the consumers with the same characteristics consume the same commodity bundle.
We discuss the symmetric equilibria and related results.

In Section 5, we study the existence and core equivalence of allocative equilibria
for economies with commodity spaces of ℓ∞ and ca(K). First, the existence and
the core equivalence theorems [59] for LDEs are reformulated and translated into
LIEs. Next, we show similar results for LIE with the commodity space ca(K). Our
fundamental observation is the following. As is well known, the basic problem con-
cerning space ca(K) is that the positive orthant has an empty norm interior. Hence,
one needs some conditions to remedy this mathematical difficulty. Jones [19, 20]
introduced the condition of a bounded marginal rate of substitution ((US), Assump-
tion 5.5). This is a local condition in the sense that it restricts the substitutability
between two commodities locally or commodities being sufficiently similar, and he
proved the existence of equilibria (hence core) under the assumption (US). Unfor-
tunately the local substitutability is not sufficient for the core equivalence. The
references [15, 48] for instance worked with the bounded rate of substitution called
(BRS) in the global sense that generates an open cone of the commodity space.
This condition was originally invented by Mas-Colell [43] as the properness. Ostroy
and Zame [48] assumed the local6 and the global substitutability at once for both
of the existence and core equivalence. Greinecker and Podczeck [15] discarded the
metrizability of K and weakened conditions on the bounds for local and global sub-
stitutablilities. But they kept the basic stance of [48] and did not ask the question of
existence. We clarified the roles of local and global substitutability for existence and
core equivalence, respectively, namely that the local substitutability is required for
existence but not for core equivalence and core equivalence can be proved without
local substitutability. Specifically speaking, we will prove in Theorem 5.7 existence
of an equilibrium assuming (US) without any global substitutability conditions and

5Precisely, Khan–Yannelis, Noguchi, and Rustichini–Yannelis assumed that there exists z ∈ X
such that ω − z belongs to the (norm) interior of X.

6They proposed an another version of the local substitutability called (PLD) which is weaker
than (US). They proved two versions of core equivalence theorems corresponding to (US) and
(PLD) respectively. The condition (BRS) is maintained throughout their paper.
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in Theorem 5.11 a core equivalence by utilizing a version of global substitutability
((CD), Assumption 5.10) proposed by Rustichini and Yannelis [56] without assum-
ing local substitutability. Finally, all the proofs are given in Section 6.

2. Mathematical preliminaries

2.1. Some Measure Space Theories. For a topological (or Banach) space Y ,
we denote the Borel σ-algebra of Y which is defined as the σ-algebra generated by
open subsets of Y by B(Y ) and the set of Borel probability measures by M(Y ).
We begin with the next well-known fact ([49, Theorem I.2.1]).

Fact 2.1. Let X be a separable metric space. Then, for every measurable set B of
measure space (X,B(X), λ), there exists a closed set CB ⊂ B satisfying λ(CB) =
λ(B) and for any closed set C ⊂ B with λ(C) = λ(B), CB ⊂ C.

The closed set CB in Fact 2.1 is called the support ofB and denoted by support(B).
Then, the next fact is also well known ([49, Theorem I.3.9]).

Fact 2.2. Let Y1 and Y2 be a complete separable metric space and B1 ∈ B(Y1) and
B2 ⊂ Y2. Let f : B1 → Y2 be a measurable and injective (one-to-one) map with
f(B1) = B2. Then, B2 ∈ B(Y2).

Let a measurable space (A,A) and a set E be given. For a map f : E → A, define
σ(f) = {f−1(B)| B ∈ A}; the smallest σ-algebra on E that makes f measurable.
One has ([1, Theorem 4.41])

Fact 2.3. Let f : E → A and g : E → Y , where Y is complete and separable7.
Then, g is σ(f)-measurable if and only if there exists an A-measurable map h : A→
Y such that g = h◦f .

Given any probability space (A,A, λ), a function on A is called almost one-to-
one if it is one-to-one on A except for some λ-null set of A. We have ([7, Theorem
9.6.3]),

Fact 2.4. Let Y be a complete separable metric space and m ∈ ca(Y ). If
(Y,B(Y ),m) is an atomless measure space, there is an almost one-to-one map from
([0, 1],B([0, 1]), dx) to Y , where dx is the Lebesgue measure on the Borel σ-algebra
B([0, 1])8.

Let f be a Borel measurable map from (A,A, λ) to a topological space X. The
direct image measure λ ◦ f−1 is denoted by f∗λ. The operator ∗λ is a map from the
set of all measurable maps of A to X that is denoted by L0(A,X) to M(X). We
then have ([22, Lemma 2.1])

Fact 2.5. For an atomless measure space (A,A, λ), the map ∗λ : L0(A,X) → M(X)
is surjective.

7We can replace the range space R in the cited result by the Polish space X; see [25, footnote
26].

8In this notation, the Lebesgue integral is understood to be denoted as
∫
f(x)dx rather than∫

f(x)d(dx).
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A measure algebra is a pair (A, λ) where A is a Boolean σ-algebra with binary
operations ∧ and ∨, a unary operation c and λ is a real valued function satisfy-
ing the following conditions:(i) λ(B) = 0 if and only if B = ∅, where ∅ = Ac

and A = ∅c are the smallest and the largest elements in A, respectively; (ii)
λ(∨∞

n=1En) =
∑∞

n=1 λ(En) for every sequence {En} in A with En∩Em = ∅ whenever
m 6= n. A map Φ : A → B between measure algebras (A, λ) and (B, µ) is called
homomorphism if it is one-to-one, Φ(Ac) = Φ(A)c, Φ(A ∨ B) = Φ(A) ∨ Φ(B) and
λ(A) = µ(Φ(A)). Measure algebras (A, λ) and (B, µ) are isomorphic if there exists
a homomorphism which is onto.

A subalgebra of A is a subset of A, which contains A and is closed under the
Boolean operation ∧, ∨, and c. The order ≤ on A is given by B ≤ C if and only if
B = B∧C. A subalgebra U of A is order-closed with respect to ≤ if any nonempty
upwards directed subsets of U with their supremum in A have the supremum in U .
A subset U ⊂ A completely generates A if the smallest order-closed subalgebra in
A containing U is A itself. The Maharam type of (A, λ) is the smallest cardinal of
any subset U , which completely generates A.

Let (A,A, λ) be a finite measure space. We define an equivalence relation on
A by E ∼ F if and only if λ(E∆F ) = 0, where E∆F = (E ∧ F c) ∨ (Ec ∧ F ).

The quotient space is denoted by Â = A/ ∼. The equivalence class represented

by E ∈ A is denoted Ê. Then, the lattice operation and the unary operation c

is defined naturally on Â, Ê ∨ F̂ = Ê ∪ F (union), Ê ∧ F̂ = Ê ∩ F (intersection),

Êc = Â\E (complement). The pair (Â, λ̂) is a measure algebra associated with

(A,A, λ), where λ̂(Ê) = λ(E). Moreover, (Â, λ̂) becomes a complete metric space
by the metric ρ(E,F ) = λ(E∆F ) (see [1], Lemma 13.13). The measure algebra

(Â, λ̂) is separable if it is a separable metric space. The Maharam type of (A,A, λ)
is defined to be that of (Â, λ̂).

Let AE = {A ∩ E| A ∈ A} the sub-σ algebra of A restricted to E ∈ A. We
denote the restriction of λ to AE by λE , or λE(B) = λ(B) for every B ∈ AE . A
finite measure space (A,A, λ) is (Maharam type) homogeneous if for every E ∈ A
with λ(E) > 0, the Maharam type of (E,AE , λE) is equal to (A,A, λ). It is easy to
see (e.g., [52, p.838])

Fact 2.6. A finite measure space (A,A, λ) is atomless if and only if for every E ∈ A
with λ(E) > 0, the Maharam type of (E,AE , λE) is infinite.

This fact motivates the next definition.

Definition 2.7. A finite measure space (A,A, λ) is saturated (or super-atomless) if
for every E ∈ A with λ(E) > 0, the Maharam type of (E,AE , λE) is uncountable.

Lebesgue space is homogeneous, and its Maharam type is countable ([13, 331X,
p.130]). Note that the saturated measure spaces are not necessarily Maharam ho-
mogeneous. Typical examples of the (homogeneous) saturated measure spaces are
the atomless Loeb space [36], product spaces of the form [0, 1]c and {0, 1}c, where c
is an uncountable cardinal, [0, 1] equipped with the Lebesgue measure, and {0, 1}
the “half-half” measure. Measure algebras of [0, 1]c and {0, 1}c are homogeneous
with their Maharam type c and are isomorphic whenever c is infinite cardinal (see
[13, Theorems 331I and 331K]), and they are separable if and only if c is countable.
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Let (A,A, λ) be a finite measure space, X and Y be complete separable metric
spaces. The next definition reveals a crucial property of the saturated spaces.

Definition 2.8. A finite measure space (A,A, λ) is said to satisfy the saturation
property for a measure µ ∈ M(X×Y ) if for every measurable function f on A with
f∗λ = µX , there exists a measurable function g on Y that satisfies (f, g)∗λ = µ,
where µX means the marginal distribution of µ on X.

Let L1(λ) be the set of all λ-integrable functions on A,

L1(λ) =

{
f : A→ R

∣∣∣∣ ∫
A
|f(a)|dλ < +∞

}
.

Denote by L1
E(λ) be the vector subspace of L1(λ) whose element is a restriction

of each function in L1(λ) to E. It is well known that (Â, λ̂) is separable if and only if
L1(λ) is separable ([1, Lemma 13.14]). The next characterization of the saturation
is well known (see [13, 22]) and would be sometimes useful.

Fact 2.9. Let (A,A, λ) be a finite measure space and X and Y be complete sepa-
rable metric spaces. Then, the following conditions are equivalent.
(a) (A,A, λ) is saturated,
(b) (A,A, λ) is atomless and satisfies the saturation property for every µ ∈ M(X×Y ),
(c) L1

E(λ) is nonseparable for every E ∈ A with λ(E) > 0.

Let ([0, 1],L([0, 1]), dx) be the usual Lebesgue space, i.e., the completion of the
measure space ([0, 1],B([0, 1]), dx). Keisler–Sun [22] proved

Fact 2.10. Let (A,A, λ) be a finite measure space, X and Y be complete separable
metric spaces and f : A → X, g : A → Y be measurable maps, and assume that
f∗λ is atomless. Suppose that (A,A, λ) has the saturation property for (f, g)∗λ,
but the Lebesgue space ([0, 1],L([0, 1]), dx) does not. Then, (A,A, λ) is saturated.

The next result is known as Egorov’s Theorem ([11, p. 97]).

Fact 2.11. Let (X, dX) be a metric space and (A,A, λ) be a finite measure space.
If (fn) is a sequence of measurable maps on A to X that converges a.e to a map
f : A→ X, then:
(i) f is measurable,
(ii) for every measurable set E ∈ A and every ϵ > 0, there exists a set F ∈ A with
F ⊂ E and λ(E\F ) < ϵ such that (fn) converges uniformly f on F .

Let {Kn} be an increasing sequence of closed subsets of a compact metric space
K converging to K in the topology of closed convergence. If qn : Kn → R t 7→
qn(t) is continuous, we write (Kn, qn) → (K, q) if q = q(t) ∈ C(K) and for every
subsequence nk and t

nk ∈ Knk with tnk → t, qnk
(tnk) → q(t). We have the following:

Fact 2.12. Let {mn} be a bounded sequence in ca(K) with support(mn) ⊂ Kn

and mn → m in the weak* topology, and (Kn, qn) → (K, q). Then, qnmn → qm
(Mas-Colell [41]).

Let (Kn, qn) be a sequence as above. We say that it is equicontinuous if for all
ϵ > 0 there is a δ > 0 such that for all t, s ∈ Kn with d(t, s) ≤ δ, |qn(t)−qn(s)| ≤ ϵ.
Mas-Colell [41] also proved the following:
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Fact 2.13. Let {Kn} be a sequence of closed sets of a compact metric space K with
Kn ⊂ Kn+1 ⊂ · · · → K in the topology of closed convergence and {qn} a sequence
in C(K) with ‖qn‖ ≤ 1. If (Kn, qn) is equicontinuous, then there is a subsequence
nk and q ∈ C(K) with (Knk , qnk

) → (K, q).

2.2. Topological Vector Lattices. Let L and M be Banach spaces. The bilinear
form for the duality pair 〈L,M〉 is denoted by 〈z, r〉 or zr for short, where z ∈ L
and r ∈ L∗. However, rz denoted by the reverse order is more convenient for
economic applications, and we follow this notation in the following. We summarize
the basic properties of the spaces used in the text.

The space of all bounded sequences

ℓ∞ =
{
x = (xt)| supt≥1|xt| < +∞

}
,

is a nonseparable Banach space with respect to the norm ‖x‖ = supt≥1|xt| for
x ∈ ℓ∞ with the dual space

ba =

{
q : 2N → R

∣∣∣ supE⊂N|q(E)| < +∞, q(E ∪ F ) = q(E) + q(F )

whenever E ∩ F = ∅
}

which is the space of bounded and finitely additive set functions on N under the
duality qz =

∫
zdq with z ∈ ℓ∞ and q ∈ ba. Let ℓ∞+ = {z ∈ ℓ∞| z ≥ 0} be

the nonnegative orthant of ℓ∞. The topology on ℓ∞ defined by the point-wise
convergence on ba is called weak topology and denoted as σ(ℓ∞, ba).

It is well known that the dual space of the space of all summable sequences,

ℓ1 =

{
p = (pt)

∣∣∣∣ ∞∑
t=1

|pt| < +∞

}
,

is ℓ∞, and ℓ1 is a separable Banach space with the norm ‖p‖ =
∑∞

t=1 |pt|. The
nonnegative orthant ℓ1+ is defined similarly as ℓ∞+ . Thus, the space ℓ1 is isomorphic
to the subspace ca of ba,

ca =

{
p ∈ ba

∣∣∣ p(∪∞
n=1En) =

∞∑
n=1

p(En) whenever Ei ∩ Ej = ∅ (i 6= j)

}
,

which is the space of the bounded and countably additive set functions on N. The
topology on ℓ∞ defined by the point-wise convergence on ℓ1 is called weak* topology
and denoted as σ(ℓ∞, ℓ1).

The set function q ∈ ba is called purely finitely additive if q′ = 0 whenever q′ ∈ ca
and 0 ≤ q′ ≤ q. The relation between the ba and ca is made clear by the next
fundamental theorem,

Fact 2.14. If q ∈ ba and q ≥ 0, then there exist set functions qc ≥ 0 and qp ≥ 0 in
ba such that qc is countably additive and qp is purely finitely additive and satisfy
q = qc + qp. This decomposition is unique ([68]).
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Let (K, dK) be a compact metric space. The space ca(K) is the set of bounded
countably additive set functions (signed measures) on K,

ca(K) =

{
m : B(K) → R

∣∣∣ supE⊂K |m(E)| < +∞, m(∪∞
i=1Ei) =

∞∑
i=1

m(Ei)

whenever Ei ∩ Ej = ∅ (i 6= j)

}
.

Then, ca(K) is a Banach space with respect to the norm

‖m‖ = sup

{
n∑

i=1

|m(Ei)|
∣∣∣∣ Ei ∩ Ej = ∅ for i 6= j, n ∈ N

}
for m ∈ ca(K).

Let C(K) be the set of all continuous functions on K. C(K) is also a separable
Banach space with respect to the norm ‖q(t)‖ = sup{|q(t)|| t ∈ K} for q = q(t) ∈
C(K). The Riesz representation theorem ([53, p. 357]) asserts that the dual space
of C(K) is ca(K), or C(K)∗ = ca(K) under the duality 〈m, q〉 =

∫
q(t)dm(t) with

m ∈ ca(K) and q = q(t) ∈ C(K) (see [1, Theorem 14.15]). The topology on ca(K)
defined by the point-wise convergence on C(K) is called the weak* topology and
denoted by σ(ca(K), C(K)). Bounded subsets of ℓ∞ and ca(K) are σ(ℓ∞, ℓ1) and
σ(ca(K), C(K))-weakly compact, respectively, i.e., that the weak* closure of the
sets are weak* compact by Banach–Alaoglu’s theorem.

Fact 2.15. If L is a Banach space, then the unit ball of L∗, B = {r ∈ L∗| ‖r‖ ≤ 1}
is compact in the σ(L∗, L)-topology. Moreover, if L is a separable Banach space,
then norm-bounded subset of L∗ is a compact metric space ([54, pp. 68-70]).

We use the following notations for the vector space orderings. For x = (xt) ∈ Rk

or ℓ∞ or ℓ1, x ≥ 0 means that xt ≥ 0 for all t and x > 0 means that x ≥ 0 and
x 6= 0. x � 0 means that xt > 0 for all t. Finally, for x = (xt) ∈ ℓ∞, we denote by
x ≫ 0 if and only if there exists an ϵ > 0 such that xt ≥ ϵ for all t. For m ∈ ca(K),
m ≥ 0 means that m(B) ≥ 0 for every B ∈ B(K). m > 0 means that m ≥ 0 and
m 6= 0. The nonnegative orthant of ca(K) or ca+(K) = {m ∈ ca(K)| m ≥ 0} is
nothing but the set of Borel measures M(K) on K. Because we have assumed K
to be a compact metric space, M(K) is a complete and separable metric space in
the weak* topology; see[66].

For t ∈ K, the Dirac measure δt is defined by δt(E) = 1 when t ∈ E, δt(E) = 0
when t /∈ E. Because (K, d) is a compact metric space, it is separable. Hence, there
exists a countable dense subset {t1, t2 . . . } ofK. Let LS(t1 . . . tn) be the linear space
spanned by {δt1 . . . δtn}. It is well known that the set ∪∞

n=1LS(t1 . . . tn) is dense in
ca(K) in the weak* topology.

These spaces are examples of locally convex topological vector spaces, that is, real
vector spaces equipped with a locally convex Hausdorff topology (i.e., topology hav-
ing a neighborhood base at 0 consisting of convex sets) such that the addition and
the scalar multiplication are jointly continuous. Moreover, they are also topological
vector lattices. In general, an ordered vector space is a vector space L endowed with
a reflexive, transitive and antisymmetric relation ≤ that satisfies (i) if x ≤ y and
a ∈ R+, then ax ≤ ay, (ii) if x ≤ y, then x+ z ≤ y + z for each z ∈ L. Let L be
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an ordered vector space and S ⊂ L. An element y ∈ L is an upper bound of S if
and only if x ≤ y for every x ∈ S. An element supS is called the supremum (least
upper bound) if it is an upper bound of S and supS ≤ y for every upper bound
y of S. Similarly, z is a lower bound of S if z ≤ x for every x ∈ S. inf S is the
infimum (greatest lower bound) if it is a lower bound of S and z ≤ inf S for every
lower bound z of S. We usually write x∨y rather than sup{x,y} and x∧y rather
than inf{x,y}. If every pair x,y of an ordered vector space L has the supremum
x ∨ y and the infimum x ∧ y, then we call L a vector lattice or Riesz space. We
write x+ = x ∨ 0 and x− = (−x) ∨ 0 and call the positive part and the negative
part of x, respectively. Then, x = x+ − x−, and we write |x| = x+ + x− and call
the absolute value of x. A topological vector lattice L is called a Banach lattice if it
is a Banach space and satisfies ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y|. The following facts
together with Fact 2.15 are also included as the “essential mathematical structures
([44, p. 1838])”.

Fact 2.16. Let L be a locally convex topological vector space and L′ its topological
dual. If A and B are disjoint convex sets such that one of which has an interior
point, then there is a nonzero continuous linear functional r ∈ L′ such that rx ≤ ry
for each x ∈ A and each y ∈ B (Hahn–Banach separation theorem, [1, Theorem
5.67]).

Fact 2.17. Let L be a vector lattice and let x1 . . .xn, z ∈ L+ satisfy z ≤
∑n

i=1 xi.
Then, there are z1 . . . zn ∈ L+ that satisfy

∑n
i=1 zi = z and zi ≤ xi (Riesz decom-

position theorem, [1, p. 319]).

2.3. Integrations of Vector-Valued Maps. Let (A,A, λ) be a finite measure
space, L a Banach space and M = L∗ its norm dual. A map f : A → L is called
simple if it is of the form f(a) =

∑n
i=1 xi1Ai(a), where xi ∈ L, Ai are measurable

partitions of A with ∪n
i=1Ai = A and 1Ai(a) is the characteristic function of Ai,

or 1Ai(a) = 1 when a ∈ Ai and 1Ai(a) = 0 when a /∈ Ai. A map f : A → L is
said to be strongly measurable if there exists a sequence (fn) of simple functions
with ‖fn(a) − f(a)‖ → 0 a.e. A strongly measurable function f is said to be
Bochner integrable if

∫
A ‖fn(a)− f(a)‖dλ→ 0. In this case, we denote

∫
A f(a)dλ =

limn→∞
∫
A fn(a)dλ and call

∫
A f(a)dλ the Bochner integral. It is well known ([10,

Theorem 2, p. 45]) that a strongly measurable map f is Bochner integrable if and
only if

∫
A ‖f(a)‖dλ <∞.

A map f : A → L is said to be weakly measurable if for each r ∈ L∗, rf(a) is
measurable. A weakly measurable map f(a) is said to be Pettis integrable if there
exists an element ξf ∈ L such that for each r ∈ L∗, rξf =

∫
Arf(a)dλ. The vector

ξf is denoted by
∫
Af(a)dλ and called Pettis integral of f .

A map f : A → L∗ is said to be weak* measurable if for each z ∈ L, zf(a) is
measurable. A weak* measurable map f(a) is said to be Gelfand integrable if there
exists an element πf ∈ L∗ such that for each z ∈ L, zπf =

∫
Azf(a)dλ. The vector

πf is denoted by
∫
Af(a)dλ and called Gelfand integral of f .

In general, let L be a locally convex topological vector space and L′ be its topo-
logical dual. A map f : A → L is said to be weakly measurable if for each r ∈ L′,
rf(a) is measurable. A weakly measurable map f(a) is said to be Pettis integrable
if there exists an element ξf ∈ L such that for each r ∈ L′, ξfr =

∫
Arf(a)dλ. The
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vector ξf is denoted by
∫
Af(a)dλ and called Pettis integral of f . Those integral

concepts can be generalized to correspondences.

Fact 2.18. Let L be a Banach space and L∗ its norm dual space. If f : A→ L∗ is
weak* measurable and zf(a) is integrable function for all z ∈ L, then f is Gelfand
integrable ([10, pp. 53–54]).

Fact 2.19. Let {fn} be a sequence of Gelfand integrable functions from A to L∗

which converges a.e. to f in the weak* topology. Then, it follows that
∫
Afn(a)dλ→∫

Af(a)dλ in the weak* topology.

For instance, let L = ℓ1. Then M = L∗ = ℓ∞. A map f : A → ℓ∞ is weak*
measurable if for each p ∈ ℓ1, pf(a) is measurable. The Gelfand integrable of f
is an element xf ∈ ℓ∞ such that for each p ∈ ℓ1, pxf =

∫
Apf(a)dλ. Similarly,

a map f : A → ca(K) is weak* measurable if for each q ∈ C(K), qf(a) is a
measurable function on (A,A, λ), and it is Gelfand integrable if there exists an
element

∫
Af(a)dλ ∈ ca(K) such that for each q ∈ C(K), q

∫
Af(a)dλ =

∫
Aqf(a)dλ.

In particular, for every Borel set B ∈ B(K), the value of the measure
∫
Af(a)dλ at

B is defined by
∫
Af(a)dλ(B) ≡

∫
Af(a)(B)dλ.

The integral of a correspondences can be defined as in the finite dimensional
cases. For instance let ϕ : A → L∗ be a correspondence and L (ϕ) = {f : A →
L∗| f is Gelfand integrable, f(a) ∈ ϕ(a) a.e} the set of Gelfand integrable selections
of ϕ. We then define ∫

A
ϕ(a)dλ =

{∫
A
f(a)dλ

∣∣∣∣ f ∈ L (ϕ)

}
.

Let X be a topological space and Fn a sequence of subsets of X. The topological
limes superior Ls(Fn) is defined by the following:
x ∈ Ls(Fn) if and only if there exists a subsequence Fnk

with xnk
∈ Fnk

for all k
and xnk

→ x (k → ∞).
The next fact is also well known (Fatou’s lemma in ℓ dimensions, [18, p. 69]).

Fact 2.20. Let (fn)n∈N be a sequence of integrable functions of a measure space
(A,A, λ) to Rℓ

+. Suppose that limn

∫
A fn(a)dλ exists. Then, there exists an inte-

grable function f : (A,A, λ) → Rℓ
+ such that

(a) f(a) ∈ Ls(fn(a)) a.e. in A,
(b)
∫
A f(a)dλ ≤ limn→∞

∫
A fn(a)dλ.

Consider a sequence of maps ϕn : A → X. For each a ∈ A, if Ls(ϕn(a)) 6= ∅, we
can define a correspondence Ls(ϕn(·)) : A→ X, a 7→ Ls(ϕn(a)). The next theorem
is attributed to Khan–Sagara–Suzuki [30], which is an infinite dimensional version
of the Fatou’s lemma and plays a crucial role in our proofs (see also [14]).

Fact 2.21. Let (A,A, λ) be a complete and finite measure space that is saturated
and L∗ be the dual space of a separable Banach space L. Let fn : A → L∗ be a
sequence of Gelfand integrable mappings from A to L∗ such that there exists an
integrable function g(a) with supn ‖fn(a)‖ ≤ g(a) a.e.

Then, there exists a Gelfand integrable map f : A→ L∗ with∫
A
f(a)dλ ∈ Ls

(∫
A
fn(a)dλ

)
and f(a) ∈ Ls(fn(a)) a.e.
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Podczeck–Sun–Yannelis ([52, 57]) proved the following:

Fact 2.22. Let (A,A, λ) be a finite measure space and L∗ be the dual space of a
separable Banach space L. Then, the following conditions are equivalent.
(i)
∫
Aϕ(a)dλ is convex for every correspondence ϕ : A→ L∗,

(ii) the measure space (A,A, λ) is saturated.

Remark 2.23. Recall that a topological space is a Suslin space if and only if it is
the image of a continuous map from a complete and separable metric space (Polish
space). A separable Banach space L is a Suslin space, and its dual space L∗ endowed
with the weak* topology is also a Suslin space (see [64, p. 67]). Hence, ℓ∞ with the
weak* topology σ(ℓ∞, ℓ1) and ca(K) with the weak* topology σ(ca(K), C(K)) for
a compact metric space K are examples of Suslin spaces, because ℓ1 and C(K) are
separable Banach spaces when K is compact ([12, p. 437]). A map from a measure
space (A,A, λ) to a locally convex Suslin space is Borel measurable if and only if it
is weakly measurable ([64, Theorem 1]). Because σ(ℓ∞, ℓ1) and σ(ca(K), C(K)) are
locally convex, maps from (A,A, λ) to ℓ∞ or ca(K) are weak* measurable if and
only if they are Borel measurable (with respect to the weak*topologies).

3. Basic model

3.1. Setup and Assumptions. Let L be a Banach lattice with its order relation
denoted by ≥ that is a dual space of the separable Banach lattice M , or L = M∗.
The order relation on M is also denoted by ≥ if there is no danger of confusion.
As usual, we define ξ > 0 if and only if ξ ≥ 0 and ξ 6= 0 and L+ = {ξ ∈ L| ξ ≥
0} (L− ≡ −L+), and similarly forM . Let Z be a convex and weak* closed subset of
L+. Throughout the paper, the commodity space is assumed to be Q = Rk×L, and
the (common) consumption set is X = Rk

+×Z. Typical elements of X are called the
consumption vectors and denoted by ξ = (x,x), ζ = (z, z), ϕ = (u,m), ψ = (y,n)
and so on, where u, x, y, z ∈ Rk

+ and m,n,x, z ∈ Z. Accordingly, we assume the

price space to be P = Rk×M , and its elements are called price vectors that are
often denoted as π = (p,p) or ρ = (q, q), p, q ∈ Rk

+ and p, q ∈M+.
As usual, a preference ≿⊂ X×X is a complete, transitive, and reflexive binary

relation on X. We denote (ξ, ζ) ∈≿ by ξ ≿ ζ. ξ ≺ ζ means that (ξ, ζ) /∈≿. Let P
be the set of allowed preference relations. The assumptions for the preferences are
as follows:

Assumption 3.1. (PR) (i) For every ≿∈ P , ≿⊂ X×X is complete, transitive,
and reflexive, which is closed in X×X in the weak* topology,
(ii) (Monotonicity). For every ≿∈ P , ξ ≺ ζ whenever ξ, ζ ∈ X and ξ < ζ.

As stated in Section 1, we do not need the convexity for the preferences, compared
with [6, 35, 40, 46, 47, 48, 61]. Because P ⊂ F(X×X) by (i), we can endow P with
the topology of closed convergence on F(X ×X) ([18, pp. 15–19]).

An endowment vector is an element of X. We denote the set of all endowment
vectors by Ω and assume it to be weak* compact subset ofX. Throughout the paper,
we consider the measurable space of consumers’ characteristics (P ×Ω,B(P ×Ω)).
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3.2. Equilibria and Core. Let (A,A, λ) be a complete probability space of the
consumers. The definition of the economy is standard.

Definition 3.2. A LIE E is a Borel measurable mapping E : A→ P×Ω defined by
a 7→ (≿a, ω(a)). The economy is called saturated (or super-atomless) if the measure
space (A,A, λ) is saturated.

An allocation is a Gelfand integrable map ξ : A → X a.e. An allocation is said
to be feasible if

∫
Aξ(a)dν ≤

∫
Aω(a)dν. It is called exactly feasible if

∫
Aξ(a)dν =∫

Aω(a)dν.
We now state a definition of a competitive equilibrium.

Definition 3.3. A pair (π, ξ) of a price vector π ∈ P+ with π 6= 0 and an allocation
ξ : A → X is called an allocative equilibrium of the economy E if the following
conditions hold:
(E-1) πξ(a) ≤ πω(a) and ξ(a) ≿a ζ whenever πζ ≤ πω(a) a.e.,
(E-2)

∫
Aξ(a)dλ =

∫
Aω(a)dλ.

A nonnull measurable subset S of the measure space of consumers (A,A, λ) is
called a coalition. We furnish the conventional definition of the core.

Definition 3.4. A coalition S ⊂ A is said to block an allocation ξ if there exists an
allocation ζ such that

(i)
∫
S ζ(a)dλ ≤

∫
S ω(a)dλ;

(ii) ξ(a) ≺a ζ(a) on S.

A feasible allocation ξ : A → X belongs to the core of an economy E if there exist
no coalitions S ⊂ A which block ξ.

4. Realization of distributive equilibria

4.1. LIE Representations for LDEs. In this section, we assume that X is a
complete and separable metric space (Polish space) in the weak* topology and that
P is also a Polish space in the closed convergence topology ([18, p. 19]). These
assumptions on X and P are satisfied for the models in Section 5. The distributive
economy is defined as follows.

Definition 4.1. A LDE is a probability measure µ on the measurable space
(P×Ω,B(P × Ω)). A distributionalized economy µ is called atomless if it is an
atomless probability measure.

A probability measure ν onX×P×Ω is called an allocation distribution if νP×Ω =
µ. An allocation distribution is called (exactly) feasible if

∫
Xι(ξ)dνX =

∫
Ωι(ω)dµΩ,

where ι is the inclusion map. Because ι(ξ) = ξ for all ξ, we hereafter denote∫
Xι(ξ)dνX =

∫
XξdνX , and so on. The distributive equilibrium is defined as follows.

Definition 4.2. A pair (π, ν) of a price vector π ∈ P+ with π 6= 0 and an allocation
distribution ν on X × P×Ω is called a distributive equilibrium of the economy µ if
the following conditions hold,
(D-1) ν({(ξ,≿, ω) ∈ X × P×Ω| πξ ≤ πω and ξ ≿ η

whenever πη ≤ πω}) = 1,
(D-2)

∫
XξdνX =

∫
ΩωdµΩ,
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(D-3) νP×Ω = µ,

where the marginals of µ are denoted by subscripts, e.g., µP denotes the marginal
on P, and so on.

Let (A,A, λ) be an atomless probability measure space for a measurable map
f : A→ P×Ω.

Definition 4.3. For an economy µ, a measurable map E : A → P×Ω such that
µ = E∗λ is called a representation of µ. The representation is called saturated if the
measure space (A,A, λ) is saturated.

Note that a representation is not unique even if it exists. Because P × Ω is a
Polish space, the representations of µ exists by Fact 2.5 in Section 2.1. Moreover,
because the saturated measure spaces are atomless, the saturated representations
also exist. Similarly, for every allocation distribution ν, a measurable map (ξ, E) :
A → X × P×Ω, which satisfies ν = (ξ, E)∗λ is the representation of ν. The map
ξ : A→ X is only simply an allocation. The representations for ν also exist by the
same reason for µ. We may call the existence of the representations for ν the weak
equivalence of the individual and distributive equilibria ([25]).

A fundamental problem is the realization of the distributive equilibrium or the
strong equivalence of the two equilibria; given an equilibrium ν of an economy µ and
an individual economy E , which represents µ, can we obtain an allocation ξ such
that (ξ, E) represents ν? The answer is generally negative for atomless measure
spaces of the consumers. However, the positive answer is the rule for the saturated
measure spaces.

Theorem 4.4. Let (A,A, λ) be a saturated probability space. Let distributive econ-
omy µ and its equilibrium ν be given. For every individual economy E : A → P×Ω
which represents µ, there exists an equilibrium allocation ξ : A → X such that
ν = (ξ, E)∗λ.

4.2. Symmetric Equilibria. The concept of the symmetric equilibria in the next
definition is attributed to [42] (see also [32]).

Definition 4.5. The equilibrium ν is called symmetric if there exists a measurable
map θ : P × Ω → X such that ν(Graph(θ)) = 1, where Graph(θ) = {(ξ,≿, ω) ∈
X × P × Ω| ξ = θ(≿, ω)}.

If an equilibrium is symmetric, then the consumers with the identical character-
istics consume the identical consumption vector.

Definition 4.6. Let a distributionalized economy µ and its equilibrium ν be given.
A probability space (A,A, λ) realizes ν, or (A,A, λ) is a realization of ν, if every
individual economy E : A → P×Ω which represents µ has a measurable map ξ :
A→ X such that ν = (ξ, E)∗λ.

Let E : (A,A, λ) → P × Ω be an individual representation that is defined on
the measure space of consumers of the distributionalized economy µ and define
σ(E) = {E−1(B)| B ∈ B(P × Ω)}; the smallest σ-algebra on A which makes E
measurable. The following results are already known for the large atomless games
[25].
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Theorem 4.7. Assume that X is a complete separable metric space and let (π, ν)
be a distributive equilibrium of µ and E a representation of µ defined on (A,A, λ).
Then, ν is symmetric if and only if ν = (ξ, E)∗λ for a σ(E)-measurable equilibrium
allocation ξ of E.

Given any probability space (A,A, λ), recall that a function on A is called al-
most one-to-one if it is one-to-one on A except for some λ-null set of A. If λ is
atomless, we can show by Fact 2.4 in Section 2.1 that there exists an almost one-to-
one Lebesgue representation, i.e., a representation defined on the Lebesgue space
([0, 1],B([0, 1]), dx).

Theorem 4.8. Let E be a representation of µ defined on ([0, 1],B([0, 1]), dx). As-
sume that E is almost one-to-one.
(a) If ξ : [0, 1] → X is a competitive equilibrium allocation of E that is measurable
in B([0, 1]), then ν = (ξ, E)∗λ is a symmetric equilibrium distribution of µ.
(b) Let ξ : [0, 1] → X be any Gelfand integrable function that is measurable in
B([0, 1]), and let ν = (ξ, E)∗dx. If ν is an equilibrium distribution of µ, then ξ is
an equilibrium allocation of E and ν is symmetric.

Theorem 4.9. Let an atomless distributionalized economy µ and its equilibrium ν
be given. Then, the following conditions are equivalent.
(a) ν is symmetric,
(b) every atomless probability space is a realization of ν,
(c) every atomless nonsaturated probability space is a realization of ν,
(d) the measure space ([0, 1],B([0, 1]), dx) is a realization of ν.

Corollary 4.10. An atomless probability space (A,A, λ) realizes a nonsymmetric
equilibrium of an atomless distributionalized economy µ if and only if it is saturated.

5. Existence and core equivalence of allocative equilibria

5.1. A Market with Infinite Time Horizon. In this section, we set L = ℓ∞

and M = ℓ1; then, the commodity space is Q = Rk × ℓ∞. We assume k ≥ 1. The
commodity vectors are written by ξ = (x,x), ζ = (z, z), where x = (xi), z = (zi) ∈
Rk and x = (xt), z = (zt) ∈ ℓ∞.

The price vector is assumed to be a vector π = (p,p) ∈ P+ = Rk
+ × ℓ1+, where

p = (pi) ∈ Rk
+ and p = (pt) ∈ ℓ1+. The value of a commodity ξ = (x,x) ∈ Q

evaluated by a price vector π = (p,p) ∈ P+ is given by πξ = px+
∑∞

t=1 p
txt.

Let (A,A, λ) be a complete probability space of the consumers. We assume
that the consumption set X∞ that is identical among all consumers is defined by
X∞ = Rk

+×Z∞, where Z∞ is a cube in ℓ∞,

Z∞ = {x ∈ L| 0 ≤ x ≤ x̂1},

where 1 = (1, 1 . . . ) ∈ ℓ∞ and x̂ is a positive constant. Of course, the x̂ > 0 is
intended to be a very large number. By Fact 2.15 in Section 2.2, Z∞ is a compact
metric subspace of L+ with respect to the weak* topology that is obviously convex.

As usual, a preference ≿ is a complete, transitive, and reflexive binary relation
on X∞ that is close in X∞×X∞ in the weak* topology. Recall that P is the set of
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allowed preferences. Because X∞ is a locally compact, complete separable metric
space, we can show as in Hildenbrand [18, Lemma, p. 98] that P is a Borel set.

An endowment vector is an element of Q+. An endowment vector is usually
written as ω = (e, e) ∈ Q+, e = (ei) ∈ Rk

+ and e = (et) ∈ ℓ∞+ . We denote the set of
all endowment vectors by Ω and assume that it is of the form

Ω∞ = {ω = (e, e) ∈ Q| 0 ≤ ω ≤ ω̂1},

for some ω̂ > 0. The number ω̂ is intended to be far smaller than x̂. The set Ω∞ is
also a compact metric space in the weak* topology. The same caveat for X∞ also
applies to Ω∞. In what follows, we often write for simplicity X∞ and Ω∞ as X and
Ω, respectively.

The endowment map a 7→ ω(a) in the economy E : A → P × Ω is Gelfand
integrable by Fact 2.18 in Section 2.3. The next assumption saying that the total
endowment belongs to the norm interior of the consumption set is standard.

Assumption 5.1. (PE) (Positive endowments). (i) e(a) > 0 a.e,
(ii)

∫
Aω(a)dλ≫ 0.

We can now state

Theorem 5.2. Let E : A → P × Ω be an economy that is saturated. Then, there
exists a competitive equilibrium (π, ξ) for E.

Theorem 5.3. Let E : A → P × Ω be an economy that satisfies the conditions
assumed in Theorem 5.2. A feasible allocation ξ : A → X belongs to the core of
the economy E if and only if there exists a price vector π ∈ P such that (π, ξ) is a
competitive equilibrium for E.

Remark 5.4. In order to prove Theorem 5.3, the saturation is not required (cf.
[51] or [56]). Since the weak* closure of the Gelfand integral

∫
AΨ(a)dλ is weak*

compact and convex (see [23] or [67]), the Hahn-Banach separation theorem can
be still applied with minor modifications. However, if we drop the saturation, non-
emptiness of the equilibrium hence the core can be no longer guaranteed, therefore
relevance of such a generalization is questionable. Moreover, under the assumption
of saturation we can invoke Fact 2.22 which makes the proof simple and straight-
forward. By these reasons we present Theorem 5.3 assuming the saturation. The
same remark applies to Theorem 5.11.

5.2. A Market with Differentiated Commodities. Let (K, dK) be a compact
metric space. In this section, we set L = ca(K) and M = C(K); hence, Q =
Rk×ca(K) and P = Rk×C(K) (k ≥ 0). A typical element of Q is denoted by
ϕ = (u,m) or ψ = (y,n), u, y ∈ Rk and m,n ∈ ca(K). The price vector is written
as ρ = (q, q), q = (qi) ∈ Rk and q = q(t) ∈ C(K).

Following [19, 41], the economic interpretation of K is a space of the commodity
characteristics. Hence, each t ∈ K represents the complete list of characteristics
that describes the commodity. A (differentiated) commodity bundle m is defined
as a signed measure on K; hence, an element of ca(K). In particular, the Dirac
measure δt is the (one unit of) commodity bundle that contains characteristics
t ∈ K. The consumption set XM is XM = Rk

+×ZM, ZM = ca(K)+. We assume
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k ≥ 0; hence, we do not require the nondifferentiated (or homogeneous) goods. We
need an additional assumption for the preferences:

Assumption 5.5. (US) For all y ∈ Rk
+, for all ≿∈ P and for every α > 1, there

exists ε > 0 such that if diameter (J) < ε and m,n ∈ ZM satisfy m(J) ≤ n(J),
then

(y,m|J +m|K\J) ≺ (y, α(n|J +m|K\J)),

where diameter (J) = sup{d(s, t) | s, t ∈ J} and m|J is the restriction of m to J .

The assumption US is called by Ostroy and Zame [48] by uniform substitutabil-
ity, meaning that for nearby commodities, consumers prefer any feasible trade in
which the “terms” (namely α) are strictly greater than one. Let PUS be the set of
preferences that satisfy Assumptions PR and US.

An initial endowment is assumed to be a nonnegative vector ϖ of XM. We often
denote ϖ = (f,f), f = (f i) ∈ Rk

+ and f ∈ ca(K)+. Let ΩM ⊂ XM be the set of
initial endowments. We assume it is of the form

ΩM = {ϖ = (f,f) ∈ Q| 0 ≤ f i,f(K) ≤ ω̂, i = 1 . . . k}, ω̂ > 0.

As before the suffix M is often omitted from XM and ΩM.
Let (A,A, λ) be a complete probability space of consumers. An endowment

assignment is a Gelfand integrable map ϖ : A → ΩM, a 7→ ϖ(a) = (f(a),f(a)).
The assumption on the endowments for this economy is

Assumption 5.6. (AE) (Adequate endowments). (i)
∫
A f(a)dλ� 0,

(ii) support
(∫

Af(a)dλ
)
= K (see Fact 2.1).

The assumption AE simply says that all commodity characteristics are available
in the market. Let EP be the composition of the map E and the projection of P ×Ω
to P, a 7→≿a. The existence of equilibria for the model with the differentiated
commodities is established by the following:

Theorem 5.7. Let E be an economy that is saturated and satisfies EP(A) ⊂ PUS and
Assumption AE. Then, there exists a competitive equilibrium (ρ, ϕ) with ρ ∈ P+\{0}
for E.

We say that τ( 6= 0) ∈ X is an extremely desirable commodity if there exists an
weak* open neighborhood U of 0 such that for each ϕ ∈ X we have ϕ ≺ ϕ+ατ −ψ
whenever α > 0, ατ ≥ ψ, and ψ ∈ αU . This notion is interpretable geometrically
as follows. Let τ( 6= 0) ∈ X, U be an weak* open neighborhood U of 0 and define
an open cone C by

C = {ατ − ψ| ψ ∈ Q,ψ ∈ αU,α > 0}.
Then, the commodity bundle τ is extremely desirable if for each ϕ ∈ X we have
ϕ ≺ χ whenever χ ∈ (C + ϕ) ∩ X. Note that this implies that τ is an extremely
desirable commodity if for each ϕ ∈ X it follows that ((−C+ϕ)∩X)∩{χ ∈ X| ϕ ≺
χ} or equivalently (−C) ∩ {χ − ϕ ∈ X| ϕ ≺ χ} = ∅. Rustichini and Yannelis [56]
strengthened the concept of the extremely desirable commodity.

Definition 5.8. A pair of commodities (χ, υ) ∈ X×X is said to be a desirable
commodity pair if for every ψ ∈ X we have ψ ≺a ψ+ χ− υ whenever ψ+ χ ≥ υ for
each a ∈ A.
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Definition 5.9. A pair (χ, υ) ∈ Q×Q is said to have the splitting property if for
any m-tuple (ψ1 . . . ψm) ∈ Q × · · ·×Q such that

∑m
i=1 ψi = (χ − υ)− there exists

an m-tuple (γ1 . . . γm) ∈ Q × · · · × Q such that
∑m

i=1 γi = (χ − υ)+ and the pair
(ψi, γi) is a desirable commodity pair.

The next condition was proposed by [56].

Assumption 5.10. (CD) (Commodity pair desirability). There exists a commod-
ity bundle τ( 6= 0) ∈ X and an weak* open neighborhood U of 0 such that any
commodity bundle pair (χ, υ) of the form χ = ατ , α > 0, and υ ∈ αU has the
splitting property.

Let PCD be the set of preferences that satisfy the conditions PR and CD. Let
P ′ ⊂ PCD be a Borel set of allowed preferences. Note that in [19, 41], the sets of
allowed preferences are assumed to be compact. Our requirement of measurability
is much weaker. The core equivalence theorem for the economy E on ca(K) is now
stated as follows.

Theorem 5.11. Let E be an economy that is saturated and satisfies EP(A) ⊂ P ′

and Assumption AE. A feasible allocation ϕ : A → X belongs to the core of the
economy E if and only if there exists a price vector ρ ∈ P+\{0} such that (ρ, ϕ) is
a competitive equilibrium for E.

6. Proofs

6.1. Proof of Theorem 4.4. First, we show

Lemma 6.1. Let (A,A, λ) be an atomless measure space, E : A → P × Ω be a
representation of µ and ξ : A → X a measurable mapping. Define ν = (ξ, E)∗λ.
Then, ξ is an equilibrium allocation of E if and only if ν is an equilibrium distribution
of µ.

Proof. Suppose that ξ is an equilibrium allocation of E . Then, there exists a price
vector π( 6= 0) ∈ ℓ∞+ with λ(E) = 1 and

∫
Aξ(a)dλ =

∫
Aω(a)dλ, where E = {a ∈

A| πξ(a) = πω(a) and ξ(a) ≿a ζ whenever πζ ≤ πω(a)}. Let
F = {(ξ,≿, ω) ∈ X × P × Ω| πξ = πω and ξ ≿ ζ whenever πζ ≤ πω}.

Then, (ξ, E)−1(F ) = E, hence ν(F ) = (ξ, E)∗λ(F ) = λ(E) = 1, which proves the
condition (D-1). Because ξ∗λ = νX and ω∗λ = νΩ = µΩ, we have from the change of
variable formula

∫
XxdνX =

∫
ΩωdµΩ. Hence, the condition (D-2) is met. Finally,

the condition (D-3) follows from νP×Ω = E∗λ = µ. The converse is also proved in a
similar way. □

We now prove Theorem 4.4. Because E∗λ = µ = νP×Ω, we have from Fact 2.5
in Section 2.1 a measurable map ξ with ν = (ξ, E)∗λ. Then, ξ is an equilibrium
allocation by Lemma 6.1. □
6.2. Proof of Theorem 4.7. To prove Theorem 4.7, we shall prove the following:

Lemma 6.2. Let (A,A, λ) be an atomless measure space, E : A → P × Ω be
a representation of µ and ν be a symmetric equilibrium of µ, i.e., there exists a
measurable mapping θ : P × Ω → X such that ν(Graph(θ)) = 1. Define ξ : A→ X
by ξ(a) = θ(E(a)). Then, ν = (ξ, E)∗λ and ξ is an equilibrium allocation of E.
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Proof. Let B ∈ X × P × Ω. Then, we have

ν(B ∩Graph(θ)) = ν({(θ(≿, ω),≿, ω)| (θ(≿, ω),≿, ω) ∈ B})
= µ({(≿, ω)| (θ(≿, ω),≿, ω) ∈ B})
= λ({a ∈ A| (ξ(a), E(a)) ∈ B}) = (ξ, E)∗λ(B),

which implies that ν = (ξ, E)∗λ and ξ is an equilibrium allocation of E from Lemma
6.1. □

Now we turn to prove Theorem 4.7. Let ν be a symmetric equilibrium of the
economy µ with a measurable map θ : P ×Ω → X such that ν(Graph(θ)) = 1. Set
ξ = θ ◦ E . It is easy to verify that ξ is σ(E)-measurable. It follows from Lemma 6.2
that ν = (ξ, E)∗λ and ξ is an equilibrium allocation of E .

Next, suppose that ν = (ξ, E)∗λ for a σ(E)-measurable equilibrium allocation of
E . By Lemma 6.1, ν is an equilibrium distribution of µ. It follows from Fact 2.3 in
Section 2.1 that there exists a measurable map θ : P ×Ω → X such that ξ = θ ◦ E .
It is sufficient to show that ν(Graph(h)) = 1, yielding the following:

ν(Graph(θ)) = (ξ, E)∗λ(Graph(θ)),
= λ({a ∈ A| (ξ(a), E(a)) ∈ Graph(θ)}),
= λ({a ∈ A| (θ ◦ E(a), E(a)) ∈ Graph(θ)}),
= λ({a ∈ A| E(a) ∈ P × Ω}) = 1,

which proves Theorem 4.7. □

6.3. Proof of Theorem 4.8. (a): Let I ′ be a Borel subset of I = [0, 1] such that
dx(I ′) = 1 and E is one-to one on I ′. We can assume without loss of generality
that both E and ξ are constant on I\I ′. Lemma 6.1 shows that for a competitive
equilibrium allocation ξ : [0, 1] → X of E that is measurable in B([0, 1]), ν =
(ξ, E)∗dx is an equilibrium distribution of µ. It remains to show that ν is symmetric.
Let B ∈ P × Ω and C = ξ−1(B)∩I ′. Because ξ is measurable, C ∈ B([0, 1]). By
Fact 2.2 in Section 2.1, E(C) ∈ B(P × Ω); hence, C ∈ σ(E). Theorem 4.7 implies
that ν is symmetric.
(b): Let ξ : [0, 1] → X be a Gelfand integrable function which is measurable in
B([0, 1]), and set ν = (ξ, E)∗dx. By Lemma 6.1, ξ is a competitive equilibrium
allocation of E . The proof of the part (a) shows that ξ is σ(E) measurable; hence,
ν is symmetric.

6.4. Proofs of Theorem 4.9 and Corollary 4.10. To prove that (a) implies
(b) in Theorem 4.9, let ν be a symmetric equilibrium of an atomless economy µ,
and (A,A, λ) an atomless probability space. Then, there exists a measurable map
θ : P × Ω → X such that ν(Graph(θ)) = 1. Suppose that E : A → P × Ω be a
representation of µ. Set ξ = θ◦E . Then, it follows from Lemma 6.2 that ν = (ξ, E)∗λ
and ξ is an equilibrium allocation. Therefore, (a) implies (b). Obviously, (b) ⇒ (c)
⇒ (d).

Now, suppose that (d) holds. Because µ is atomless, it follows from Fact 2.4
that there exists a representation E of µ on a measure space ([0, 1],B([0, 1]), dx)
which is almost one-to-one. Because ([0, 1],B([0, 1]), dx) realizes ν, there exists an
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equilibrium allocation ξ of E such that ν = (ξ, E)∗dx. Then, it follows from Theorem
4.8 that ν is symmetric. □

Finally, we deduce the Corollary. Let (A,A, λ) be saturated. Then, it real-
izes any distributive equilibrium, i.e., a symmetric equilibrium. Conversely, let ν
be nonsymmetric distributive equilibrium of an economy µ. We can easily show
that ([0, 1],B([0, 1]), dx) is a realization of ν if and only if the Lebesgue space
([0, 1],L([0, 1]), dx) realizes ν. Therefore, by Theorem 4.9, neither ([0, 1],B([0, 1]), dx)
nor ([0, 1],L([0, 1]), dx) realizes ν. Because (A,A, λ) realizes ν, it follows from Fact
2.10 in Section 2.1 that (A,A, λ) is saturated. □

6.5. Proof of Theorem 5.2. Step 1: Let E : A→ P×Ω be the economy. For each

n ∈ N, let Ln be the canonical projection of ℓ∞ to Rn, Ln = {ξ = (ξt) ∈ ℓ∞| ξ =
(ξ1, ξ2 . . . ξn, 0, 0 . . . )}. We then define

Xn = X ∩ Ln, ≿n
a=≿a ∩(Xn×Xn), Pn = P ∩ 2L

n×Ln
,Ωn = Ω∩Ln.

Similarly, we denote the canonical projection of ω = (ω1, ω2 . . . ωn, ωn+1 . . . ) ∈ Ω
as ωn = (ω1, ω2 . . . ωn, 0, 0 . . . ) ∈ Ωn. Obviously, ωn → ω in the weak* topology.
They induce finite dimensional economies En : A → Pn × Ωn defined by En(a) =
(≿n

a , ωn(a)), n = 1, 2 . . . . Then, we have the following:

Lemma 6.3. For each n ≥ k, there exists a quasicompetitive equilibrium for the
economy En, or a price-allocation pair (πn, ξn(a)) that satisfies
(Q-1n) πnξn(a) ≤ πnω(a) and ξn(a) ≿a ζ whenever πnζ ≤ πnωn(a) and πnωn(a) >
0 a.e.,
(Q-2n)

∫
Aξn(a)dλ ≤

∫
Aωn(a)dλ.

Proof. See Khan and Yamazaki [34], Proposition 2. □

Step 2: Because ωn(a) = (en(a), en(a)) → ω(a) = (e(a), e(a)) a.e., we have∫
A
ωn(a)dλ→

∫
A
ω(a)dλ

by Fact 2.19 in Section 2.3. Without loss of generality, we can assume that πn1 =∑n
t=1 p

t
n = 1 for all n, where πn = (ptn) and 1 = (1, 1 . . . ). Here, we have identified

πn ∈ Rn
+ with a vector in ℓ1+ that is also denoted by πn as πn = (πn, 0, 0 . . . ).

We denote ξn(a) = (xn(a),xn(a)) ∈ Xn. The finite dimensional Fatou’s lemma
(Fact 2.20 in Section 2.3) implies that there exists a measurable map x : A →
Rk
+ such that x(a) ∈ Ls(xn(a)) a.e. in A and

∫
A x(a)dλ ≤ limn→∞

∫
A xn(a)dλ

(≤
∫
A e(a)dλ). By Fact 2.21 in Section 2.3, we have a Gelfand integrable function

x : A → X such that x(a) ∈ Ls(xn(a)) a.e., and
∫
A x(a)dλ ≤

∫
Ae(a)dλ. Let

ξ(a) = (x(a),x(a)). Then we have obtained that∫
A
ξ(a)dλ ≤

∫
A
ω(a)dλ.

Since the set ∆ = {π ∈ ba+| ‖π‖ = π1 = 1} is weak* compact by the Alaoglu’s theo-
rem (Fact 2.15 in Section 2.2), we have a subnet (πn(κ), ξn(κ)(a)) with
(πn(κ), ξn(κ)(a)) → (π̂, ξ(a)) a.e. in the weak* topology, where π̂ ∈ ba+ with π̂1 = 1.
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Step 3: Define the set P = {a ∈ A| π̂ω(a) > 0}. Because πn ∈ ℓ1 for all n, we

have
∫
A πn(κ)ω(a)dλ = πn(κ)

∫
A ω(a)dλ → π̂

∫
A ω(a)dλ > 0 by Assumption PE (ii)

and π̂1 = 1; hence, we obtain λ(P ) > 0. The essence of the proof is contained in
the next Lemma.

Lemma 6.4. ξ(a) ≺a ζ implies that π̂ω(a) < π̂ζ a.e. on P .

Proof. If the lemma was false, there exists ζ(a) = (ζt(a)) ∈ X such that π̂ζ(a) ≤
π̂ω(a) and ξ(a) ≺a ζ(a) on a subset of P with λ-positive measure. Let Qn =
{a ∈ A| a does not satisfy (Q-1n)} and R = {a ∈ A| ξ(a) /∈ Ls(ξn(a))}. Set Q =
∪∞
n=1Qn. Since Q∪R is of measure 0, P\(Q∪R) is nonempty. Let a ∈ P\(Q∪R).

We can assume without loss of generality that π̂ζ(a) < π̂ω(a) and ξ(a) ≺a ζ(a).
Let ζn(a) = (ζ1(a) . . . ζn(a), 0, 0 . . . ) be the projection of ζ(a) to Xn. Because
ζn(a) → ζ(a), we have for sufficiently large n0 that π̂ζn0(a) ≤ π̂ζ(a) < π̂ω(a) and
ξ(a) ≺a ζn0(a).

Because (πn(κ), ξn(κ)) → (π̂, ξ(a)), there is a κ1 with n(κ1) ≡ n1 ≥ n0 such that
0 ≤ πn1ζn0(a) < πn1ω(a) = πn1ωn1(a), and ξn1(a) ≺a ζn0(a), or ξn1(a) ≺n1

a ζn0(a).
This contradicts the fact that (πn1 , ξn1(a)) is a quasi-equilibrium for En1 . □

By Lemma 6.4 and Assumption PR (ii) we obtain p � 0; hence, it follows
from Assumption PE (i) that λ(P ) = 1. Let π̂ = π + πp be the Yosida–Hewitt
decomposition where π ∈ ℓ1+ is the countably additive part and πp is purely the
finitely additive part. Lemma 6.4 combined with Assumption PR (ii) imply that
πξ(a) ≥ πω(a) a.e. Then, it follows from the resource feasibility condition that we
have the budget conditions πξ(a) = πω(a) for almost all a ∈ A. The condition
(E-1) follows immediately from Lemma 6.4.

Because
∫
Ax

t(a)dλ ≤
∫
Ae

t(a)dλ ≤ ω̂ < x̂ for each t, there exists a positive

amount of consumers with xt(a) < x̂. Then, by the monotonicity PR (ii), one
obtains that pt > 0 for all t. Because p� 0, it follows that

∫
Aξ(a)dλ =

∫
Aω(a)dλ,

or the condition (E-2) is met. This completes the proof of Theorem 5.2. □
6.6. Proof of Theorem 5.3. The proof that a competitive equilibrium allocation
is a core allocation is standard. Therefore, it is skipped.

Step 1: We shall show C (E) ⊂ W (E). Let ϕ(·) ∈ C (E) and define P : A → ℓ∞

by P (a) = {ξ ∈ ℓ∞| ϕ(a) ≺a (ξ + ω(a))} and Ψ : A → ℓ∞ by Ψ(a) = P (a) ∪ {0},
respectively. It follows from Assumption PR (ii) and unboundedness of the first k
goods that P (a) 6= ∅, a.e.

Lemma 6.5. Graph(Ψ) ∈ B(A× ℓ∞).

Proof. By the measurability of P and the continuity of preferences, the set

G = {(≺, ξ, η) ∈ P × ℓ∞ × ℓ∞| η ≺ ξ}
is a Borel set of P × ℓ∞ × ℓ∞. Defining a map ψ : A × ℓ∞ → P × ℓ∞ × ℓ∞ by
ψ(a, ξ) = (≺a, ξ+ω(a), ϕ(a)), it follows that Graph(P ) = ψ−1(G). Because the map
ψ is measurable by Remark 2.23 of Section 2.3, the graph of Ψ is measurable. □

Because Ψ(a) is weak* measurable by Lemma 6.5 and Remark 2.23, we can
define the integral

∫
AΨ(a)dλ. Because 0 ∈

∫
AΨ(a)dλ, it is nonempty and convex

by Fact 2.22. We now show that
∫
AΨ(a)dλ ∩ ℓ∞− = {0}. Suppose not. Then,
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there exists a function h : A → ℓ∞ such that h(a) ∈ Ψ(a) a.e., and
∫
A h(a)dλ < 0.

Set C = {a ∈ A| h(a) 6= 0}. Obviously, λ(C) > 0. Define an integrable function
g : A→ ℓ∞ by

g(a) = h(a) + ω(a)−
∫
A h(a)dλ

λ(C)
.

We can write g(a) = (g̃(a), g(a)) = ((g̃i(a)), (gt(a))) ∈ Rk × ℓ∞, and let ĝ(a) =
(ĝt(a)) by ĝt(a) = inf{gt(a), x̂}. Setting ĝ(a) = (g̃(a), ĝ(a)), it can be easily seen
that ϕ(a) ≺a ĝ(a) a.e. in C and

∫
C ĝ(a)dλ =

∫
C ω(a)dλ, contradicting ϕ ∈ C (E).

We can apply Fact 2.16 to the two disjoint convex sets
∫
AΨ(a)dλ and ℓ∞− \{0} and

obtain a vector π̂ ∈ ba with π̂ > 0 such that

0 ≤ π̂ζ whenever ζ ∈
∫
A
Ψ(a)dλ.

Step 2: We shall show that

π̂η ≥ π̂ω(a) whenever ϕ(a) ≺a η a.e.

To do this, we first verify π̂ϕ(a) = π̂ω(a) a.e. in A. Let C ⊂ A be a measurable
set with λ(C) > 0 and take an ϵ > 0 and d ∈ Rk

+\0. We define j : A → X by the
following

j(a) =

{
ϕ(a)− ω(a) + ϵ(d,0) for a ∈ C,

0 for a /∈ C.

Then, it follows from Assumption PR (ii) that j(a) ∈ Ψ(a); hence,

π̂

(∫
C
ϕ(a) + ϵλ(C)(d,0)−

∫
C
ω(a)dλ

)
≥ 0,

and rearranging this, we obtain
∫
C π̂ϕ(a)dλ ≥

∫
C π̂ω(a)dλ − ϵλ(C)π̂(d,0); hence,∫

C π̂ϕ(a)dλ ≥
∫
C π̂ω(a)dλ for any C ⊂ A, because ϵ > 0 is arbitrary. We then

conclude π̂ϕ(a) ≥ π̂ω(a) a.e. It follows from
∫
A ϕ(a)dλ ≤

∫
A ω(a)dλ that π̂ϕ(a) =

π̂ω(a) a.e., as desired. By replacing ϕ(a) in the definition of j(a) by η with ϕ(a) ≺a η
for a ∈ C, we obtain

∫
C π̂ηdλ ≥

∫
C π̂ω(a)dλ. Because C ⊂ A is arbitrary, we

conclude π̂η ≥ π̂ω(a) for every η such that ϕ(a) ≺a η a.e. in A.
The remaining part of the proof proceeds in the same way as in the last part of

the proof of Theorem 5.2. Let π̂ = πc + πp be the Yosida–Hewitt decomposition

where πc ≡ (p, q) ∈ Rk
+ × ℓ1+ is the countably additive part and πp is purely finitely

additive part. The budget conditions πcϕ(a) = πcω(a) a.e. can be shown as usual.
The above condition and Assumption PR (ii) imply p � 0, hence πcω(a) > 0 a.e.
by Assumption PE. We then conclude ϕ(a) ≺a η implies πcη > πcωa, a.e. This
completes the proof. □

6.7. Proof of Theorem 5.7. Step 1: Let ϵn be a sequence of positive numbers
decreasing to zero. As in [19, 41], we can construct a sequence of finite subsets
Kn = {tn1 . . . tnmn

} of K and a sequence of pairwise disjoint open sets Bn
i with
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tni ∈ Bn
i for i = 1 . . .mn such that denoting Bn = ∪mn

i=1B
n
i ,

dK(tni , t) ≤ ϵn for every t ∈ Bn
i and for all n, i = 1 . . .mn,∫

A
ϖ(a)dλ(Bn) =

∫
A
ϖ(a)dλ(K),

Kn ⊂ Kn+1 for all n, and Kn → K in the topology of closed convergence.

For each n, let Ln = LS(tn1 . . . t
n
mn

) ⊂ ca(K) be the linear space spanned by

{δtn1 . . . δtnmn
} and set Xn = Rk × (Z∩Ln). We then define Pn = P ∩ (Xn×Xn)

and let rn be a map from P to Pn defined by

rn(≿) =≿n=≿ ∩(Xn ×Xn).

Jones [19, Lemma 6] proved that the map rn(·) is continuous. It is obvious that
rn(≿) →≿ as n→ +∞.

For each n, let Λn : P ×X → Pn ×Xn be a map defined by

Λn(≿, ϖ) = (≿n, ϖn), ≿n= rn(≿), fn = f, fn =

mn∑
i=1

f(Bn
i )δtni .

It is obvious from definition that ϖn(K) = ϖ(K). Because rn is continuous and
Bn

i are open, the map Λn is measurable. Set En = Λn ◦ E : A → Pn × Xn,
En(a) = (≿n

a , ϖn(a)). Then, En is an economy with finite number of commodities.
Because support

(∫
Af(a)dλ

)
= K, we have by construction∫

A
ϖn(a)dλ� 0,

where we have identified Xn with Rk+mn
+ . Then, we have the following

Lemma 6.6. The economy En has a competitive equilibrium, or there exists a price
vector ρn ∈ Rk+mn

+ with ρn 6= 0 and an allocation ϕn : A→ Xn that satisfy
(E-1n) ρnϕn(a) ≤ ρnϖn(a) and ϕn(a) ≿a ψ whenever ρnψ ≤ ρnϖn(a) a.e. in A,
(E-2n)

∫
Aϕn(a)dλ =

∫
Aϖn(a)dλ.

Proof. Because
∫
Aϖn(a)dλ� 0 and the preferences are monotone, the assumptions

for Theorem 2 in Hildenbrand [18, p. 151] are satisfied. □

Step 2: We denote ρn = (qn, qn) = ((qin), (qn(t))) ∈ Rk
+×Rmn

+ . Without loss of

generality, we can assume ‖ρn‖ = max{qin, qn(t)| i = 1 . . . k, t ∈ Kn} = 1 for every
n. In the next lemma, the assumption of bounded marginal rate of substitution US
plays an essential role.

Lemma 6.7. Let (ρn, ϕn) be the equilibrium obtained by Lemma 6.6. Then, (Kn, qn)
are equicontinuous.

Proof. Suppose that (Kn, qn) are not equicontinuous. Then, we can assume that
there exist sequences (tn), (sn) such that

d(tn, sn) → 0 and lim
n→∞

qn(tn)

qn(sn)
> 1.
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For tn with mn({tn}) > 0, define

m(tn,sn)
n = mn −mn({tn})δtn +

(
qn(tn)

qn(sn)

)
mn({tn})δsn .

Because
∫
Amn(a)dµ =

∫
Aen(a)dµ� 0, we have

µ ({a ∈ A| mn(a)(tn) > 0}) > 0.

If mn(a)(tn) > 0, then by Assumption US, we have for n sufficiently large that

(un(a),mn(a)) ≺a (un(a),m
(tn,sn)
n (a)).

This is a contradiction because qnm
(tn,sn)
n (a) = qnmn(a). □

We can assume without loss of generality that qn → q ∈ Rk
+, and it follows

from Fact 2.13 in Section 2.1 that we can assume that (Kn, qn) → (K, q) for some
q ∈ C(K). Let ρn = (qn, qn) and ρ = (q, q). Clearly ‖ρ‖ = 1.

Lemma 6.8. Suppose that (Kn, qn) → (K, q) and ϖn → ϖ ∈ Ω with ρϖ > 0. Let
ϕn(a) = (un(a),mn(a)) ∈ Rk

+×Rmn
+ and suppose un(a) → u(a), and for each n,

ρnϕn(a) ≤ ρnϖn and ψ ≿n
a ϕn(a) whenever ρnψ ≤ ρnϖn. Then, if q(t∗) = 0 for

some t∗ ∈ K, then mn(a)(K) → +∞.

Proof. Suppose not. Then, by taking subsequence if necessary, we can assume that
mn(a) → m̂ for some m̂ ∈ Z. We now claim that ρϕ(a) ≤ ρϖ(a) and ϕ(a) ≿a ψ
whenever ρψ ≤ ρϖ(a), where ϕ(a) = (u(a), m̂) and ψ = (y,n). To see this, suppose
that there exists ψ ∈ X with ρψ ≤ ρϖ(a) and ϕ(a) ≺a ψ. Because ρϖ(a) > 0 we
can assume without loss of generality that ρψ < ρϖ(a) and ϕ(a) ≺a ψ. Setting
ψn = (y,nn), where nn =

∑mn
i=1n(B

n
i )δtni , we have ψn → ψ; hence, ρnψn < ρnϖn(a)

and ϕn(a) ≺n
a ψn for n large enough, contradicting the assumption. This cannot be

the case, however, because q(m+ δt∗) = qm and (u(a), m̂) ≺a (u(a), m̂+ δt∗). □

Step 3: We now claim that there exists an ϵ > 0 such that qn(t) ≥ ϵ > 0 for all t ∈
Kn, n = 1, 2 . . . . If this is not the case, there exists a sequence {tn} ⊂ Kn such that
tn → t∗ for some t∗ ∈ K with qn(t

n) → 0. Obviously, this implies that q(t∗) = 0 as
well. Choose s ∈ K such that q(s) = 1/2 and take an open neighborhood U of s such
that q(t) > 1/2 for t ∈ U . Let B = {a ∈ A| ϖ(a)(U) > 0}. Clearly, B is measurable,
and by Assumption AE, λ(B) > 0. Because qnfn(a) → qf(a) > 0 a.e. on B by
Fact 2.12 in Section 2.2, we have ρnϖn(a) → ρϖ(a) > 0 a.e. on B, and it follows
from Lemma 6.8 that

∫
Afn(a)dλ(K) =

∫
Amn(a)dλ(K) ≥

∫
Bmn(a)dλ(K) → +∞.

However, this contradicts that∫
A
fn(a)dλ(K) →

∫
A
f(a)dλ(K) < +∞.

Because qn ≥ ϵ and ‖ϖ(a)‖ ≤ ω̂, it follows that

0 ≤ mn(a)(K) ≤ ω̂

ϵ
for all n large enough, a.e.



1004 TAKASHI SUZUKI

Then, by applying Fact 2.21 in Section 2.3, we obtain that there exists a measurable
map m(a) such that∫

A
m(a)dλ ∈ Ls

(∫
A
mn(a)dλ

)
and m(a) ∈ Ls(xn(a)) a.e.

It follows from

lim
n→∞

∫
A
un(a)dλ ≤ lim

n→∞

∫
A
fn(a)dλ = lim

n→∞

∫
A
f(a)dλ < +∞

and Fact 2.20 that there exists a measurable map u : A → Rk
+ such that u(a) ∈

Ls(un(a)) a.e. in A and
∫
A u(a)dλ ≤ limn→∞

∫
A un(a)dλ. Let ϕ(a) = (u(a),m(a)).

We show that (ρ, ϕ(·)) is an equilibrium for E .
Because

∫
Aϖn(a)dλ =

∫
Aϕn(a)dλ, ϕn(a) → ϕ(a) a.e. and ϖn(a) → ϖ(a) a.e., it

follows from Fact 2.19 in Section 2.3 that∫
A
ϖ(a)dλ = lim

n

∫
A
ϖn(a)dλ = lim

n

∫
A
ϕn(a)dλ =

∫
A
ϕ(a)dλ,

and one obtains from ρn → ρ and Fact 2.12 in Section 2.2 that

ρϕ(a) ≤ ρϖ(a) a.e.

Hence, the condition (E-2) and the budget conditions are met.
Suppose that there exists ψ = (y,n) ∈ X such that ρψ ≤ ρϖ(a) and ϕ(a) ≺a ψ.

If ρϖ(a) > 0, then because the preferences are continuous, we can assume without
loss of generality that ρψ < ρϖ(a) and ϕ(a) ≺a ψ. Let ψn = (y,

∑mn
i=1n(B

n
i )δtni ).

Because ρnϖn(a) → ρϖ(a) and ρnψn → ρψ, it follows from (E-1n) and (6.2) that
ρnψn < ρnϖn(a) and ϕn(a) ≺a ψn for n large enough, a contradiction. If ρϖ(a) = 0,
we can easily show from Assumptions PR (ii) and AE that q � 0. Then, because
q(t) ≥ ϵ for all t ∈ K, the budget set is a singleton, or {ϕ ∈ X| ρϕ ≤ 0} = {0};
hence, ϕ(a) = 0 is trivially a maximal element in the budget set. Therefore, the
condition (E-1) is also met and we complete the proof. □

6.8. Proof of Theorem 5.11. Step 1: In the following proof, we omit the prime of

P ′ and denote it simply as P. The proof that a competitive equilibrium allocation
is also a core allocation is standard. Therefore, it is skipped. For the opposite
direction, let ϕ : A → X be a core allocation, and we need the following auxiliary
result.

Lemma 6.9. Define the upper contour set of ϕ(a) by

Φϕ(a) = {γ ∈ X | ϕ(a) ≺a γ}.
Then, the correspondence a 7→ Φϕ(a) has a measurable graph.

Proof. By the measurability of P and the continuity of preferences, the set G =
{(≿, ψ, γ) ∈ P×X×X | ψ ≺ γ} belongs to B(P×X×X). Define Γ : A×X →
P×X×X by Γ(a, γ) = (≿a, ϕ(a), γ). Obviously, Γ is a measurable map by the
remark 2.23; hence,

Graph (Φϕ(a)) = Γ−1(G) ∈ B(A×X)

. □
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We show that there exists a price vector ρ ∈ P such that (ρ, ϕ) is a competitive
equilibrium for E . Define the correspondence Ψ : A→ 2X by

Ψ(a) = Φϕ(a) ∪ {ϖ(a)}.

Step 2: Let C = ∪α>0α(τ−U), where τ( 6= 0) ∈ X and U are given in Assumption
CD. We show that (∫

A
Ψ(a)dλ−

∫
ϖ(a)dλ

)
∩ −C = ∅.

Because −C is weak* open, it is sufficient to show that for any Gelfand integrable
function ψ : A→ X such that

∫
A ψ(a)dλ ∈

∫
AΨ(a)dλ, and there exists a sequences

of Gelfand integrable maps ψn : A → X and ϖn : A → X such that ψn(a) → ψ(a)
and ϖn(a) → ϖ(a) a.e. in the weak* topology, hence

∫
A ψn(a)dλ→

∫
A ψ(a)dλ and∫

Aϖn(a)dλ→
∫
Aϖ(a)dλ and∫

A
ψn(a)−

∫
A
ϖn(a)dλ /∈ −C

for a large enough n. Let S = {a ∈ A| ϕ(a) ≺a ψ(a)}. If λ(S) = 0, then ψ(a) = ϖ(a)
a.e. by definition of Ψ(a); hence,

∫
A ψ(a)dλ −

∫
Aϖ(a)dλ /∈ −C. Hence, we may

assume that λ(S) > 0.
For each n ∈ N, define Sn = {a ∈ S| ‖ψ(a)‖(= ψ(a)(K)) ≤ n}. Obviously,

S1 ⊂ S2 ⊂ . . . are measurable and ∪∞
n=1Sn = S, λ(Sn) → λ(S) as n → ∞. Hence,

we can take a measurable subset SN of S such that λ(SN ) is arbitrarily close to λ(S)
and ψ(a) is norm bounded on SN . If we restrict our discussion on SN , then we can
assume without loss of generality that {ψn(a)} are included in a bounded subset

X̂ = {ϕ ∈ X| ‖ϕ‖ ≤ N + 1}. On X̂, the weak* topology is metrizable by Alaoglu’s
theorem (Fact 2.15 in Section 2.1); hence, in the same way as [59, Lemma 7], we

have a sequence of simple functions ψ̂n : S → X with ψ̂n(a) → ψ(a) a.e. in Ŝn in
the weak* topology. Then, by Egorov’s Theorem (Fact 2.11 in Section 2.1), there
exists a measurable set S′ ⊂ SN of positive measure with λ(S′) arbitrarily close to

λ(SN ) such that ψ̂n(a) → ψ(a) uniformly on S′. By the continuity of preferences,

for sufficiently large n, we have ϕ(a) ≺a ψ̂n(a) a.e. in S
′.

We can write

ψ̂n(a) =

mn∑
i=1

ψ̂i
n1Si

n
(a),

where
ϕ(a) ≺a ψ̂

i
n for all a ∈ Si

n and all i = 1 . . .mn,

and 1Si
n
(·) is the indicator function of the set Si

n with S′ = ∪mn
i=1S

i
n. Without

loss of generality, we may assume that λ(S1
n) = · · · = λ(Smn

n ) = λ̂. Let ϖn(a) =∑mn
i=1

(
λ̂−1

∫
Si
n
ϖ(a)dλ

)
1Si

n
=
∑mn

i=1ϖ
i
n1Si

n
.

We now show that
∫
S′ ψ̂n(a) −

∫
S′ ϖn(a)dλ /∈ −C. Suppose not. Then, for some

α > 0 one has
mn∑
i=1

ψ̂i
nλ̂−

mn∑
i=1

ϖi
nλ̂ ∈ −α(τ + U)
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and therefore
mn∑
i=1

ψ̂i
n + χ− υ =

mn∑
i=1

ϖi
n,

where χ = (α/λ̂)τ and υ ∈ (α/λ̂)U . Because
∑mn

i=1ϖ
i
n ≥ 0, it follows from the

presented equation that

(χ− υ)− ≤
mn∑
i=1

ψ̂i
n.

Then, by the Riesz decomposition theorem (Fact 2.17 in Section 2.2), we can find

0 ≤ ψi
n ∈ Q with 0 ≤ ψi

n ≤ ψ̂i
n, i = 1 . . .mn and

∑mn
i=1 ψ

i
n = (χ − υ)−. It follows

from Assumption CD that there exist mn commodity bundles γ1n . . . γ
mn
n such that∑mn

i=1 γ
i
n = (χ− υ)+ and

ψ̂i
n ≺a ψ̂

i
n + γin − ψi

n for all a ∈ Si
n and all i = 1 . . .mn.

Set ψ̃i
n = ψ̂i

n + γin − ψi
n. We have ϕ(a) ≺a ψ̃

i
n from ϕ(a) ≺a ψ̂

i
n for all a ∈ Si

n and

all i and the transitivity of ≺a. Define ψ̃n(a) =
∑mn

i=1 ψ̃
i
n1Si

n
(a). Then,∫

S′
ψ̃n(a)dλ =

mn∑
i=1

ψ̃i
nλ̂ =

mn∑
i=1

ϖi
nλ̂ =

∫
S′
ϖ(a)dλ.

We have found an allocation ψ̃n(a) that is feasible for the coalition S′ and pre-
ferred to ϕ(a) a.e. in S′, which contradicts the assumption that ϕ(a) is a core
allocation.

Define ψn : A→ X by

ψn(a) =

{
ψ̂n(a) for a ∈ S′,

ψ(a) for a /∈ S′.

Similarly, we define ϖn : A→ X by

ϖn(a) =

{
ϖn(a) for a ∈ S′,

ϖ(a) for a /∈ S′.

Because S′ ⊂ S and λ(S′) is arbitrarily close to λ(S) and C is weak* open, we
conclude that

∫
A ψn(a)−

∫
Aϖn(a)dλ /∈ −C; hence,(∫

A
ϕ(a)dλ−

∫
ϖ(a)dλ

)
∩ −C = ∅.

Step 3: By Fact 2.22 in Section 2.3,
∫
AΨ(a)dλ is convex. By the Hahn–Banach

separation theorem (Fact 2.16 in Section 2.2), there exists ρ ∈ P such that

ρψ ≥ ρ

∫
A
ϖ(a)dλ

for every ψ ∈
∫
AΨ(a)dλ. The monotonicity PR (ii) implies that ρ ≥ 0.

We will show that for a.e.

ψ �a ϕ(a) implies that ρψ ≥ ρϖ(a).
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To do this, first we now show that ρϕ(a) = ρϖ(a) a.e. Let C ⊂ A, λ(C) > 0 and

ϵ > 0. Define ĵ : A→ X by

ĵ(a) =

{
ϕ(a) + ϵ

∫
Aϖ(a)dλ for a ∈ C,

ϖ(a) for a /∈ C.

Then, we have

ρ

(∫
C
ϕ(a)dλ+ ϵλ(C)

∫
A
ϖ(a)dλ+

∫
A\C

ϖ(a)

)
≥ ρ

∫
A
ϖ(a)dλ.

Given that ϵ > 0 is arbitrary, we rearrange this inequality to have that
∫
C ρϕ(a)dλ ≥∫

C ρϖ(a)dλ for any C ⊂ A. It follows that ρϕ(a) ≥ ρϖ(a) a.e. Because
∫
A ϕ(a)dλ =∫

Aϖ(a)dλ, we have ρϕ(a) = ρϖ(a) a.e. Replacing in the definition of ĵ(a) by
ψ ∈ Ψ(a) for a ∈ C, we have

∫
C ρψdλ ≥

∫
C ρϖ(a)dλ. Because C ⊂ A is arbitrary,

we conclude that
ψ �a ϕ(a) implies that ρψ ≥ ρϖ(a) a.e.

The following argument is standard. For a ∈ A with ρϖ(a) > 0, we can show
that ρψ > ρϖ(a) whenever ϕ(a) ≺a ψ. By Assumption PR (ii), we can easily show
that ρ is strictly positive. Then, for a ∈ A such that ρϖ(a) = 0, the budget set
is a singleton {0}, meaning that ϕ(a) = 0 is utility maximizing under the budget
constraint; hence, condition (E-1) of Definition 5.8 holds. This shows that (ρ, ϕ) is
a competitive equilibrium. □
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