
Identification of Implicit Legal Requirements

with Legal Abstract Knowledge

Seiichiro SAKURAI

Department of Systems Science

Tokyo Institute of Technology

Yokohama, Japan

Abstract

In order to acquire legal rules from legal texts, legal

requirements and legal effects must be identified. How-

ever, some of legal requirements are expressed implic-

itly. Such implicit legal requirements can be found

by lawyers when they understand legal texts. In this

paper, to mechanize legal knowledge acquisition pro-

cess, a lawyer’s understanding process of legal texts

is analyzed. The lawyer’s understanding process can

be viewed as an abductive reasoning process, since the

lawyer can introduce implicit legal requirements which

are not appeared in legal texts. This paper models

such a reasoning process when lawyers understand le-

gal texts. Based on the analysis of lawyer’s understand-

ing process, a knowledge acquisition support system is

proposed.

1 Introduction

In order to redlze a legal expert system, we must trans-

late legal texts into machine executable forms. If legal

rules are translated into rules like Prolog program, a

legal knowledge-base can be constructed. Since a le-
gal rule consists of legal requirements and a legal ef-

fect, they must be identified correctly. However, since
some of legal requirements are described implicitly, ma-

chine translation is very difficult. In spite of implicit

legal requirements, lawyers can correctly identify legal

rules by clarifying implicit legal requirements. Since

lawyers seem to use their legal expertise in order to fill

the gap between the real meaning of legal texts and the
literal meaning of them, such legal expertise should be

clarified. This paper analyzes a lawyer’s understanding
process of legal rules. In the analysis, a kind of legal

knowledge seems to guide the lawyer’s understanding

Permission to copy without fee all or pan of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
pet-mission.

@ 1993 ACM 0-89791 -606-9/93/0006/0298 $1.50

Hajime YOSHINO

Faculty of Law

Meiji Gakuin University

Tokyo, Japan

process. We call such legal knowledge as a legal abstrac-

tion, since it is widely applicable knowledge and it is

abstracted from specific legal knowledge. Based on the

analysis of human understanding process, a knowledge

acquisition support system is proposed. Our system ac-

quires new knowledge by using given legal abstractions,

which is represented by a Higher Order Horn Clause.

2 Knowledge Representation

2.1 Compound Predicate Formula

Legal knowledge can be represented by a set of com-

pound predicate formulas(CPF). A CPF is a rule, which

can be interpreted by a deductive reasoning engine like

a Prolog interpreter. A legal rule can be represented by

a CPF as follows:

legal requirements legal effect
- p+

ri represents a legal requirement and e represents a

legal effect. ri and e are called compound predicate

terms. A compound predicate term can be represented

as follows:

predicate(ID, CaseList)

predicate is a predicate name, and ID is an identi-

fier of predicate. The identifier is used as a reference

of predicate instance. CaseList is a list of pairs and

each pair represents case role and filler. Each filler may

be a compound predicate term. Case and filler are sep-

arated by “:”. For example, a concept, “a contract is

concluded”, is represented as follows:

he_concluded(idl, contract(id2, [agt :-, obj :-, ...]))

In the above example, “idl” and “id2” are predicate

identifiers, and “agt” , which stands for agent case, and

“obj”, which stands for object case, are case name abbre-

viations. “.” is an anonymous variable. Note that the

predicate “contract” appears as a subterm in the above

example, and the predicate contract should be proved

298

in order to verify whether the concept, ‘(a contract is

concluded’’, holds or not.

2.2 Interpreting CPF

A CPF is a formula for representing a legal rule and it

directly corresponds to a legal sentence. Since legal ccm-

cepts in a CPF are represented as chunks of primitive

legal concepts, it seems to be comparatively e~y for

lawyers to understand a CPF. For example, the follow-

ing legal rule can be represented by a CPF in Figure 1.

An offer becomes effective when it reaches the

offeree.

In the above legal rule, the legal effect is “an offer be-

comes effective” and the legal requirement is “the of~er

reaches the offeree”. They are represented by compound

predicate terms in Figure 1.

become.effectively [obj:offer(O,[agt:A,

goaofferee(B,C)]),

tim:D]) t

reach(_,[obj:offer(O,[agt:A,goaofferee(B,C)]),

tim:D,

goaofferee(B,C)]).

Figure 1: Example of CPF

By using compound predicate terms, the legal re-

quirements and the legal effect can be distinguished eas-

ily. However, since a compound predicate term relay

contain other compound predicate terms as its sub-

terms, computational interpretation of CPFS is not easy.

In order to enable efficient interpretation of CPFS, a

fixed legzd dictionary, including legal taxonomy, is as-

sumed. By using the legal dictionary, a CPF is con-

verted into a flat CPF automatically like [5]. In the

conversion, the case names are eliminated and the ci~e

names are represented by argument places. For exam-

ple, the CPF in Figure 1 is converted as follows:

become-effective(yO,D) +

offer(O,A,B), offeree(B,_), reach(aO,D,B).

As shown in the above example, the filler of the obj

of the becomeAfective is replaced with the identifier.

The second argument of the become-effective represents
the obj’s filler and the third argument represents the

tire’s filler. “Tim” is the abbreviation of time. Sim-

ilarly, other predicates are converted. In a flat CPF,

only identifiers are allowed as its fillers. Since a ilat

CPF is a function free Horn Clause, it can be executed

directly by a Prolog interpreter. If the predicate is not

referred from other ptedicate, its identifier is omitted,

too. Therefore, the above flat CPF can be represented

aa follows:

become_effective(O,D) +

offer(O,A,B), offeree(B,-), reach(O,D,B).

In the real application, we should provide other rules,

which bridge the CPFS and the given facts. For exam-

ple, since the given facts may not designate the offeree,

the offeree’s definition rule will be needed. Such defini-

tion rules are assumed in the legal dictionary.

3 Human Understa~ding Pro-

cess

A lawyer’s understanding process is an yzed by using
tUnited Nations Convention on Contrac s for the Inter-

national Sale of Goods. Since the convention is applied

to contracts of sale of goods, Article 23, which is applied

to “conclusion of contract,” is concerned, Article 23 is
shown in Figure 2.

Article 23

A contract is concluded at the moment when

an acceptance of an offer becomes effective in

accordance with the provisions of this Conven-

tion.

Figure 2: United Nations Convention on Contracts for

the International Sale of Goods

Since a legal rule consists of legal requirements and

a legal effect, the requirements and the effect must be

identified. In Figure 2, even a novice or a beginner of

law can identify that the legal effect is “a contract is

concluded”. Since most of articles describe such legcd

effects explicitly, the identification of the legal eilect is

an easy task. However, it is not so easy to identify legal

requirements of articles because of implicitly described

legal requirements. Of course, the identification of ex-

plicit legal requirements is easy. Article 23 is initially

understood as a rule shown in Figure 3. In Figure 3, un-

used cases are omitted for simplicity. Indeed, since some

relations between primitive concepts are not sufficiently

specified, the ideal rule should specify such relations.

A novice would understand Article 23 as such a rule,

since the rule seems to represent the literal meaning of

the article. Once such a rule is obtained, even a novice

tries to its validity. The rule can be verified by amum-

ing an ideal situation in which a contract is concluded.

In such a situation, the acceptance of the offer must

be_concluded(_, [agt:[A,B],

obj:contract(a[agt: [A, B]]),

tim:D]) e
become.effective(_,

[obj:acceptance(=
[agt:B,

obj:offer(~ [agt:A,goa:B]),

gowA]),

tim:D).

Figure 3: Initial Understanding of Article 23

become effective. Since the following Article 18-2 de-

scribes when the acceptance becomes effective, the rule

of Article 18-2 will be used for the verification of the

CPF in Figure3.

Article 18

1. A statement made by or other conduct of

the offeree indicating assent to an offer is an

acceptance.

2. An acceptance of an offer becomes effective

at the moment the indication of assent reaches

the offeror.

The CPF of Article 18-2 is shown in Figure 4.

become.effective(-,

[obj:

acceptance(IdA,

[agt:A,

obj:offer(C,[agt :offeror(B,[obj: C]),

goaA]),

goaofferor(B,(obj: C])])]) i-

reach (-,

[obj:indication(IdA,

[agt:A,

obj :assent (_,

[agt:A,

obj:offer(C,[agt :offeror(B,[obj: C]),

goaA]),

goaofferor(B,[obj: C])]),

goaofferor(B,[obj: C])]),

goa:offeror(B,[obj: C])]).

Figure 4: CPF of Article 18-2

If the legal requirement of Article 18-2, “the indica-

tion of assent reaches the offeror”, is assumed in the

ideal situation, “a contract is concluded” can be proved
by using two legal rules, Article 23 and Article 18-2. In

this way, rules translated from legal texts are verified.

Because of such successful explanation, the novice’s un-

derstanding process may halt. Are the above rules re-

ally correct ones? In spite of such successful explana-

tion, most lawyers can provide its counter-example. For
example, by means of “withdrawal of offer; even if the

indication of assent reaches, the contract cannot be con-

cluded. Therefore, lawyers’ understanding process don’t

halt when only such explanation is made successfully.

The lawyers’ massive legal expertise seems to enable

them to investigate further.

When lawyers understand legal texts, they also con-

firm whether the legal effect can be derived from the

identified legal effects or not. Then they judge the va-

lidity of the derivation by using their legal expertise.
The verification process can be seen as a backward rea-

soning process of a legal effect. Figure 5 shows such an

explanation.

indication-o f_assent ~each

I :-.----..--.---.-..-.-.---------..---.----.---...-
offer_be_effective i...

/
acceptance-b ecome-effective

\

/

/

i

contract-be_concluded

Figure 5: Explanation

In Figure 5, each subgoal, compound predicate term,

is represented by a proposition. The first top goal is the

“contract.be.concluded”. In the explanation, although

“offer-be_ effective” does not appear in the legal texts,

it is regarded as a legal requirement by a lawyer. The

understanding process can be seen as an abductive rea-

soning process since the explanation is constructed by

adding implicit legal requirements. In the search of such

legal requirements, the candidates of the legal require-

ments seem to be weakly constrained by lawyers’ ab-

stract legal knowledge. In Figure 5, a general principle

about contract, “a contract is a match of offer and ac-
ceptance” weakly constrains the candidates.

After the verification, a new legal requirement, “offer

is effective”, is added into the body of the legal rule of

Article 23. For example, the following rule can be made.

contract-be-concluded t

acceptance-become_effective, (1)

offer-be-effective

30 ()

If the legal rule whose effect is “the acceptance lbe-

comes effective” is modified so that its requirement part

includes “the offer is effective”, the same result can be

derived. For example, the following rule can be made.

acceptance.become.e ffective t

indication.ofawent_reach, (2)

offer_be_effective

The former legal rule (1) is preferred since the f’or-

mer one matches the lawyer’s abstract legal knowledge.

Such a knowledge is called a legal abstraction, since it

represents abstract knowledge which is abstracted from

a specific legal knowledge. An example of a legal ab-

straction is shown in Figure 6. In Figure 6, the legrd

norm sentence is a super concept of the contract, and

the indication of intention is a super concept of both

the acceptance and the offer. Since the offer is prior to

the acceptance, the former legal rule (1) matches the le-

gal abstraction in Figure 6. If there exists another legal

abstraction, the latter legal rule (2) may be preferred.

I I

If two indications of intention forms a le-

gal norm sentence, the legal norm sentence

is concluded when the prior indication of

intention is effective and the posterior in-

dication of intention becomes effective,

Figure 6: Example of Legal Abstraction

In this way, the lawyer’s understanding process seems

to be guided by legal abstractions. Therefore, legal

knowledge acquisition from legal texts can be seen as

abduction constrained by legal abstractions.

4 Abductive Reasoning and Abs-

tract Legal Knowledge

Legal rule acquisition process can be viewed as an ex-

traction process of a legal effect and an abductive ex-

planation process of legal requirements. As an abduc-

tive explanation engine, an inverse resolution [3, 4, 5]

method is used. The inverse resolution is an inverse op-

eration of resolution. Figure 7 shows typical operations

of the inverse resolution. The basic operation is per-

formed by V operator. In the resolution, C is derived

from Cl and G’2. In the inverse resolution, Cl is derived
from C and GZ or Gz is derived from C and Cl.

Rouveirol[4] has proposed “Saturation Operator”,

which is an inverse resolution operator. The algorithm

of Saturation [4] is shown in Figure 8.

● V Operator

C1(+)WC2(-)
c

● W Operator

Figure 7: Inverse Resolution as Abduction[3]

Given the clause C. : T. + Lce and a domain theory T,

proceed to steps 1,2 and 3:

1.

2.

3.

Skolemization of Cc into C’.O. (one-keeps track of 6, for

skolemization). For each literal Lcei in the body of C.,

a clause cs~g is created, with C8ki : Lc=j Ela +.

Deductive phase: we apply all possible resolutions be-

tween the set of clauses {Ca~j } and the clauses of T.

If atoms have been deduced after step 2, they are trans-
formed into unit clauses and added to {Cs~, }. The

process then iterates on step 2. If no literals have been

deduced after step 2, the {C8~i } are deskolemized and

added to LC= to form the body of the saturated clause,
c=.

Figure 8: Algorithm of saturation[4]

301

Inverse resolution can construct rules which bridge a

gap between a newly observed fact and known facts.
However, the search space of the inverse resolution is

very huge. For example, the offer-be-effective in Fig-

ure 5 is not described in the UNCCIS. Therefore, the

offer_be_effective should be constructed aa a new pred-

icate. While W Operator is an operator which has an

ability to invent a new predicate, the control of appli-

cation of W Operator is very difficult. Furthermore,

as shown in the previous section, the invention of new

predicate should be controlled by legal abstractions. A

legal abstraction is represented by Higher Order Horn

Clause[l]. The legal abstraction in Figure 6 can be

represented by Higher Order Horn Clause. Figure 9

shows an example of a legal abstraction represented by

a Higher Order Horn Clause.

be_concluded(=[agt: _obj:Xid,tim:C]) +

X(Xid,[obj:_]),

become-effective(q[obj :Yld,tim:C]),

Y(Yld,[obj:_]),

be.effective(_Jobj: Zid,tim: C]),

Z(Zid,[obj:-]).

Constraints:

X is legal norm sentence.

Y is an indication of intention,

Z is an indication of intention.

Z is prior to Y.

Figure 9: Legal Abstraction Represented by a Higher

Order Horn Clause

In Figure 9, X, Y and Z are predicate variables, and
the constraints can be considered as predicate types[l].

Since the constraints are used in Higher Order Unifica-

tion, only the same type predicates are allowed to bind

the predicate variables. For the efficiency, all predicates

are instantiated by predicate constants. Under the re-

striction, a legal abstraction can be seen ss a First Order

Horn Clause. If the legal concept hierarchy is repre-

sented by a set of First Order Horn Clauses, the inher-

itance is realized as a deductive inference. In order to

distinguish the legal deductive inference with the inher-

itance, a legal abstraction is represented by a Higher

Order Horn Clause.

A legal abstraction can be converted into a flat le-
gal abstraction. For example, the legal abstraction in

Figure 9 can be converted as follows:

be.concluded(xid) t

X(Xid,a-),

becomeAfective(Yld),

Y(Yid,ya-), (3)

302

be_effective(Zid),

Z(Zid,a-,-).

The above example, each predicate arity is deter-

mined by using the legal dictionary. Based on the above

Iegrd abstraction (3), a new rule can be obtained as an

instance. An instance of a legal abstraction can be ob-

tained by substituting the predicate variables with the

same type predicate constants. By assuming such le-

gal abstraction, the legal effect can be proved also by a

theorem prover like Aprolog[l].

!5 Knowledge Acquisition Sup-

port System

KASS is a legal knowledge acquisition support system
based on the analysis of human understanding process.

Figure 10 shows the overview of KASS.

KASS has two components for legal knowledge acqui-

sition. One is a bug detection module and the other is

an abductive ressoning engine based on the inverse reso-

lution. The bug detection module is based on Shapiro’s

algorithmic debugger[6]. A set of facts and rules are
given to the module. Then the module interacts the

user to identify bug rules. Figure 11 shows an erro-

neous explanation when the offer is not effective. If all

leaves of the explanation in Figure 11 are confirmed by

the user, the following two rules may be considered as

bug rules.

be.concluded(i4) +

contract(i4,a,b), offer(i5,a,b,c), (4)

acceptance(i6,b,a,i5), become-effective(i6)

become_effective(i6) -

offer(i5,a,b,c), acceptance(i6,b, a,i5), (5)

reach(i6,a)

If multiple rules are considered as bug rules, legal

abstractions are used for selection of a bug rule. If the

legal abstraction (3) is given to the KASS, the legal rule

(4) is selected as a bug rule. If another legal abstraction

is given, the legal rule (5) may be selected.

The bug rule is given to the abductive reasoning en-

gine and it is eliminated from the legal knowledge base.

The rrmooning engine then finds an appropriate legal

abstraction. If the legal abstraction (3) is selected, the

following instance can be generated.

be_concluded(Xid) t

contract (Xid,a-),

become-effective(Yld),

acceptance(Yldma _), (6)

rLegal

Abstraction
I)B

I
\F

Engine

lHxlf!!iE1/L
t —

Figure 10: KASS

be.concluded(i4)

contract(i4,a,b) offer(i5,a,b,c) acceptance(i6,b, a,i5) become-effective(i6)

offer(i5,a,b,c) acceptance(i6,b, a,i5) reac(i6,a)

Figure 11: Erroneous Explanation

303

be_effective(Zid),

offer(Zid,-,_.).

By referring the original rule, the above rule can be

refined aa follows:

be-concluded(A) +

contract(A,B,C),

become-effective(D),

acceptance(D,C, B, E), (7)

be.effective(E),

offer(E,B,C,.).

In the above legal rule (7), a new predicate

be.effective(offer(A,B,C,D)) is introduced. This new

predicatewillbe anew subgoalof the abductive reason-

ing engine and other new rules may be found. If such

auxiliary legal rules are found successfully, new legal

rules , which satisfy legal abstractions, can be learned.

6 Learning Examples

Figure 12 is the initial knowledge base provided to the

KASS. Although Article 18 is described by legal sen-

tences, Article 18 is represented by a single legal rule.

The temporal information is omitted for simplicity, in

the real application, the theory for temporal reasoning

should be needed.

UNCCIS

Article15 : become_effective(A) +

offer(A,aB,-), reach(A,B)

An%de17 : be-terminated(A) +

offer(A,B,-,-), rejection(C,A),

reach(C,B)

An$icle18 : become_effective(A) +

acceptance(A,B, C, D),

offer(D,C,B,-), reach(A,C)

Article23 : be_concluded(A) +

contract(A,B,C), offer(D,B,C,_),

acceptance(E,C, B, D),

become-effective(E)

auxiliary rules

not-be-terminated(X) + not(be-terminated(X)).

Figure 12: Initial Knowledge

The following query is given to KASS. The right hand

side of ~ is assumptions and the left hand side is the

goal which should be proved.

be.conclude(il) @

contract(il,a,b), offer(i2,a,b,c), reach(i2,b), (8)

acceptance(i3,b, a,i2), reach(i6,a)

The above example can be paraphrased as:

If the offer reaches the offerree and the accep-

tance reaches the offeror, is a contract con-

cluded?

While the above example is only used for the ver-

ification of legal knowledge-base, if the following goal

is proved, then the legal knowledge-base includes some

bug rules.

be-conclude(i4) ~

contract (i4,a,b}, offer(i5,a,b,c), reach(i5,b), (9)

acceptance(i6,b, a,i5),

rejection(i7,i5), reach(i7,a), reach(i6,a)

In the first step, the proof of be.concluded(i4) con-

tains the application of Article 18 and Article 23, they

may be erroneous rules. By using the legal abstraction

(3), Article 23 is identified as an erroneous rule, and the

following rule (10) is obtained as an instance of the legal

abstract ion.

be_concluded(A) i-

contract(A,B,C), offer(D,B,C,E), (lo)

acceptance(F,C, B, D), become_effective(F),

be-effective(D).

The above rule can be converted into the CPF as

shown in Figure 13 when the user wants to see the

learned legal rule.

However, the verification process needs another as-

sumption, be_effective. Then, KASS’S abductive rea-

soning engine is invoked recursively, the following legal

rule (11) can be obtained if appropriate legal abstrac-

tions are given.

be-effective(X) t

offer(X,-,-,-), become-effective(X), (11)

not-be-terminated(X).

In this way, erroneous rules are removed and the cor-

rect rules can be obtained from legal abstractions.

304

bedoncluded(.,[agt: [A,B],

obj:contract (Y”[agt:[A,B]]),

tim:C]) :-

become-effective(-,

[obj:

acceptance(y
[agt:B,

obj:offer(D,[agt: A,goaB]),

goaA]),

tim:C]),

be-effective(.,

[;~of$r(D,[agt:A,goaB]),

:.

Figure 13: Learning Example

7 Conclusions

This paper describes a knowledge acquisition from legal

texts based on the analysis of human knowledge acqui-

sition process. If background knowledge is provided, we

can approach the automatic knowledge acquisition from

legal texts. By replacing the legal abstraction database,

a variety of legal knowledge can be obtained.

Since the acquired knowledge does not contain dy-

namically interpretation knowledge, in order to imple-

ment a legal expert system, other inference engine such

as [7, 2] is required.

References

[1] D. Miller, et al.. Uniform proofs as a foundation fcm

logic programming. In Annals of Pure and Applied

Logic, 51, pp. 125-157, 1991.

[2] M. Haraguchi. A form of analogy as an abductive

inference. In ALT91, pp. 266-2’74, 1991.

[3] S. Muggleton and ‘W. Buntine. Machine invention

of first-order predicates by inverting resolution. In

Workshop on Machine Learning, pp. 339-352, 1988.

[4] C. Rouveirol. Semantic model for induction of first

order theories, In 1JCA191, Morgan Kaufmann,

1991.

[5] C. Rouveirol and J. F. Puget. Beyond inversion of

resolution. In Workshop on Machine Learning, pp.
122-130, 1990.

[7] H. Yoshino et al. Foundation of Systematization

of Legal Analogy (In Japanese). Proc. of the 5th

Annual Conference of JSAI, pp. 219-222, 1991.

[6] E. Shapiro. Algorithmic program debugging. MIT

Press, 1983.

305

