Time in Automated Legal Reasoning*

Lluís Vila†
Department of Software (LSI)
Technical University of Catalonia
Barcelona, Catalonia, Spain

Hajime Yoshino
Meiji Gakuin University
Tokyo, Japan

Keywords: Formalizing law, time, legal reasoning.

Abstract

Despite the ubiquity of time and temporal references in legal texts, their formalization has often been either disregarded or addressed in an ad hoc manner. In this paper we address this issue from the standpoint of the research done on temporal representation and reasoning in AI. We identify the temporal requirements of legal domains and propose a temporal representation framework for legal reasoning which is independent of (i) the underlying representation language and (ii) the specific legal reasoning application. The approach is currently being used in a rule-based language for an application in commercial law.

1 Introduction

Automated legal reasoning systems require a proper formalization of time and temporal information [40, 29]. Quoting L. Thorne McCarty [29]:

"...time and action are both ubiquitous in legal domains. ..."

Notions related to time are found in major legal areas such as labor law (e.g. the time conditions to compute benefit periods), commercial law (e.g. the time of the information used to establish the validity of agreements or to calculate damages1 [7]), criminal law (e.g. the temporal information known about the various elements involved in the analysis of a criminal case), patent law (e.g. the time constraints formulated in regulations for applying to patents). Moreover, many procedural codes associated with these statutes usually require the management of timetables based on some temporal representation.

*Acknowledgments. We are thankful to Trevor Bench-Capon, Eddie Schwalb, Marek Sergot and anonymous referees for helpful discussions. Contact address: Lluís Vila, LSI dept., UPC, 08034 Barcelona, Catalonia, Spain; vila@lsi.upc.es; http://www.iiia.csic.es/~vila.

†Partially supported by MEC of Spain (grant EX-94 779906683) and IIIA-CSIC.

1It can either be before the tort, at the tort time, before the trial, until the damages have been paid or even after that.
We elaborate on two representative examples. The first example is taken from the *United Nations Convention for International Sale of Goods (CISG)* [55].

Example 1 (CISG) Article 15: An offer becomes effective when it reaches the offeree. An offer, even if it is irrevocable, may be withdrawn if the withdrawal reaches the offeree before or at the same time as the offer.

This article contains various temporal aspects that are common in legal texts. We find denotations for events that *happen at a certain time* (e.g. “reach”), objects that have a certain *lifetime* (e.g. “offer”, “withdrawal”), properties that *change over time* (e.g. “an offer is effective”) and *temporal relations* (e.g. “before or at the same time”).

We borrow our second example from [36].

Example 2 Next two articles belong to the Canadian Unemployment Insurance Law:
Section 9(1) […] A benefit period begins on the Sunday of the week in which
(a) the interruption of earnings occurs, or
(b) the initial claim for benefit is made, whichever the later.

Section 7(1) […] the qualifying period of an insured person is the shorter of
(a) the period of fifty-two weeks that immediately precedes the commencement of a benefit period under subsection 9(1), and
(b) the period that begins on the commencement date of an immediately preceding benefit period and ends with the end of the week preceding the commencement of a benefit period under subsection 9(1).

In addition to denotations of temporal events (e.g. “interruption of earnings”, “claim for benefits”), we find references to temporal units such as “qualification period” and “benefit period”, and temporal relations such as “begins”, “ends”, “period of fifty-two weeks”, “the period that precedes”, “the period that immediately precedes” and a rich variety of temporal operators such as “the shorter of …”, “the Sunday of the week…”, “the later of …”.

This work belongs to the tradition of formalizing law using logic. Despite the prominent presence of temporal references in legal texts, temporal representation and reasoning is an issue that legal reasoning projects have often either disregarded or addressed in an *ad hoc* manner. Furthermore, it is a surprising situation given the prolific research activity done on temporal reasoning in AI during the past 15 years (see [47] for a survey). This may be due to the fact that, quoting Marek Sergot [40], “it looks like a huge topic”. Another reason could be the utilization of techniques traditionally disconnected from legal reasoning such as constraint satisfaction.

Our goal here is to provide a representation framework well-suited to formalizing the temporal aspects of law in its different areas. We build upon results from the research area of *temporal reasoning in AI*.

We proceed by first identifying the requirements of legal domains (section 2). Then we outline the features that characterize a temporal representation framework and point
out some of the choices proposed for each feature (section 3.1). After that we overview related work (section 3.2) and, finally, we systematically discuss each feature and select the choice that best addresses the requirements (section 4). We illustrate the adequacy of our proposal, called LTR, by revisiting the examples above. The guarantee of the applicability of LTR is conditioned to the validity of the requirement analysis we did.

The contribution of this paper is twofold: (i) as a reference for analyzing the temporal representation in existing legal reasoning systems, and (ii) as the foundation in building the “temporal component” of a legal reasoning application. Temporal representation and reasoning is a very broad area and covering everything would be too ambitious for a single paper, even if its focus is on a particular application area. The following issues are out of the scope of this paper: (i) periodic occurrences, (ii) handling time associated with legal provisions, and (iii) non-monotonic temporal reasoning.

Terminology Before going ahead we define few terms common in the temporal reasoning literature used throughout this paper. By temporal expression we mean an expression whose denotation is naturally associated with a specific time. In the above examples, “offer is effective” and “interruption of earnings” are temporal expressions. We shall distinguish between fluents when they are expressions that describe the state of affairs in a given domain (“offer is effective”), and events when they represent occurrences that may change that state (“interruption of earnings”)\(^2\). A temporal proposition is a logical proposition representing a temporal expression. By temporal relation we mean a relation whose arguments are all temporal, and by temporal function a function whose range is temporal\(^3\).

2 Requirements

In this section we identify the requirements of a temporal representation language for formalizing law. The analysis is done at the two main general levels: notational efficiency, which comprises issues such as expressiveness, modularity, readability, compactness, flexibility, ... and computational efficiency. Finally, we explain the issues that have not been considered in this work.

2.1 Notational Efficiency Requirements

Repeated Temporal References A repeated temporal reference is a temporal expression that includes a reference to another temporal expression. Repeated temporal references abound in legal texts. Let have a look on a piece from example 1:

“An offer, even if it is irrecoverable, may be withdrawn if the withdrawal reaches the offeree before or at the same time as the offer.”

\(^2\)“Offer” can be modelled as an event, if we refer to the offer object, or as a fluent if we refer to the “existence of the offer”.

\(^3\)As opposed to a function whose interpretation is time-dependent.
The “reach” event makes reference to a “withdrawal” of an “offer” of a “contract”, all these being temporal objects with their own associated times of occurrence (see figure 1). In addition, some implicit constraints may hold among these various times. For example, the “reach” event cannot happen outside the lifetime interval of the offer.

Temporal Operators Legal texts with temporal references often involve a (sometimes large) number of temporal operators. Example 2, for instance, involves a function that returns “the shorter of” two periods or a function that returns the “the latest of” two dates.

Precise and Indefinite Temporal Relations In addition to exact times and dates (e.g. 3:15pm, October 2nd 1996), many different classes of “less precise” temporal relations appear in legal texts. The following are some examples: “… before or at the same time than …”, “… during …”, “… contains or overlaps …”, “… immediately precedes …”, “… in few days …”, “… between 2 or 3 days …”, “… either 2 or 3 days if … or between 1 and 2 weeks if …”. These relations are called *indefinite* since they represent a set (interpreted as a disjunction) of possible times. When the set is not convex we talk about non-convex or *disjunctive* relations.

Indefinite relations are often present in the description of legal cases (e.g. “… few days later the message was dispatched”, “the transaction took a couple of weeks”, “between 9:00 and 10:00 the suspect was seen at …”).

Several Temporal Levels Some legal applications require distinguishing between different levels of temporal information [40]. A common distinction (often made in database systems [42]) is *real time* (in databases called *valid time*) vs. *belief time* (i.e. *transaction time*).

Modularity Since legal domains usually involve knowledge related to various notions such as evidence, belief, intention, obligation, permission, uncertainty, modularity is a central issue. A desirable feature of a temporal representation is that it allows for an orthogonal combination with other knowledge modalities.
2.2 Computational Efficiency Requirements

The ability to efficiently encode and process temporal relations may have a high impact on the performance of the overall procedure from both points of view: space and time.

The size of the temporal representation is polynomial in the number of temporal propositions and the number of possible temporal relations which, in turn, depends on the model of time adopted (bounded, dense/discrete, etc.).

The time performance of answering temporal queries can be strongly influenced by the class of temporal relations supported. The worst-case time complexity of checking consistency of a set of temporal constraints can at best be linear in the number of relations, but if the indefiniteness of temporal relations is non-convex it is unlikely that the problem is tractable [51, 14]. In most legal scenarios the ratio number of temporal relations vs. number of temporal propositions is relatively low and the amount of non-convex indefiniteness is small. However, some cases are found in specific domains (such as in some criminal cases) or some tasks (e.g. legal planning) where multiple temporal possibilities need to be taken into consideration.

In both, easy and hard cases, the capability of efficiently answering queries about temporal relations is an important issue. In the easy case because the number of temporal propositions involved in legal scenarios may be large. In the hard case because of the potential dramatic performance degradation due to the combinatorial nature of non-convex relations.

2.3 Issues not Addressed

Periodic Occurrences Although not very common, some legal norms and cases require the expression of periodic events such as “pay X once every month” or “get a supply twice a week from 1/1/95 to 1/1/96”. This is an issue of current research [32, 53] that we shall not address here.

The Time of Law Law changes over time. New norms are introduced and some existing ones are derogated over time. A proper account of these changes is obviously important to correctly interpret the law [9, 10]. This is a fairly open issue in automated legal reasoning which could be handled by means of a temporal representation that associates time with objects more complex than atomic propositions such as rules or contexts. Our investigation here is restricted to time associated to atomic propositions.

Non-monotonic Temporal Reasoning Rescinding agreements, withdrawing decisions, handling retro-active provisions\(^4\), ... all require non-monotonic reasoning capabilities. It can be considered a “temporal” issue since non-monotonic assumptions and inference rules can be formulated using the underlying temporal language. Moreover, there is a non-monotonic reasoning specifically temporal: the one that concerns assumptions about

\(^4\)Retro-active effects are also related to the issue of law change.
temporal relations. For instance, we may want to assume that a fluent over time as long as it is consistent with the rest of the information. This matter is out of the scope of this paper.

3 Temporal Representation: Background

3.1 Features

A temporal reasoning formalism is defined by a set of features that we survey in this section. They are graphically presented in figure 2.

Figure 2: The features of a temporal representation framework.

Time Ontology The most basic feature is the ontology of time, namely the set of primitive temporal units and primitive temporal relations. The two classical approaches are instants (or time points) and periods (or time intervals). As instant primitive relations, for example, one can take the three simple qualitative relations between two points in a line: $<$, $=$ and $>$. When temporal relations involve numeric information, an additional ontological unit is needed: the duration. A duration is the distance between two time points.

A related ontological issue is granularity. From a semantical point of view, granularity is defined as the primitive unit of “real time” over which the primitives of our time ontology are interpreted. From a practical point of view, the granularity is determined by the smaller unit used to specify durations in a given context. Different contexts may require different granularities and systems dealing with different contexts may require a mechanism to switch from one granularity to another.

5Labels in bold indicate framework components and the ones in *italics* are either a set of axioms or a set of algorithms based on a set of axioms. Imbricated blocks denote *part-of* dependencies whereas arrows represent a *design* dependency, i.e. the design of the source has implications on the design of the target.

6Note that instant-to-instant numeric relations, period lengths and absolute times (such as dates) can all be regarded as durations.

7“Real time” here means time that can be measured by an existing device.
The intuitions about the structure of time (such as the type of ordering, bound/unbound, discrete/dense, ...) are specified by a set of axioms called the theory of time. A lot of work has been done on the study of theories based on instants [45] and periods [52, 21, 34, 3], on deriving one primitive from the other, and on defining ontologies that combine them [45, 43, 4, 8, 16, 49].

Temporal Constraints The primitive temporal relations and (logical) combinations of them are naturally regarded as constraints. For example, “the time point \(p \) is before or after the time point \(p' \)” is a constraint that restricts the set of possible values for the relative temporal distance between \(p \) and \(p' \). When the set is non-convex we talk about non-convex constraints. This together with the temporal units and the allowed temporal constraints determine the temporal constraint class. For instance, the constraint in the above example is a non-convex qualitative point constraint. A temporal constraint formalism must be provided with a set of specialized temporal constraint satisfaction algorithms [44, 19, 38].

Temporal Qualification A central feature is the method employed to ascribe time to temporal propositions. It usually involves a number of newly defined predicates such as Allen’s *Holds* or Shoham’s *True* which express that a given proposition is true at a certain time. These are called temporal incidence predicates (TIP). Figure 3 presents a scheme of the various temporal qualification methods proposed in the literature.

![Temporal Qualification Diagram](image)

Figure 3: Temporal qualification methods in AI.

The most straightforward approach, called *temporal arguments* [22, 5]⁸, proposes introducing time as one or more additional arguments (e.g. \(\text{effective}(o,a,b,\ldots,t_1,t_2) \)). A variation called *token arguments* [13, 17] uses a third element, the temporal token or *token* which links propositions with their relative times (e.g. \(\text{effective}(o,a,b,\ldots,t) \)).

⁸This is the approach classically used in databases.
A token represents a particular temporal instance of a given temporal proposition.

The *temporal reification* approach [30, 2] models temporal propositions as logical terms called *propositional terms*. A propositional term is associated with its times by making them all the arguments of a TIP (e.g. \texttt{Holds(effective(o,a,b,...),[t1,t2])}). A variant called *token reification* [48] proposes first adding time as argument and then reifying (e.g. \texttt{holds(effective(o,a,b,...,t1,t2))}). In this case the propositional term denotes a temporal token.

Finally, modal approaches introduce a number of temporal modal operators that qualify propositions. Classically temporal modal operators are *relative*. For instance, given a proposition \(\Phi \), \(\texttt{F} \Phi \) means \(\Phi \) is true in some future, \(\texttt{G} \Phi \) means \(\Phi \) is true in every future time, \(\texttt{N} \Phi \) means \(\Phi \) is true at next time. More general, *absolute* operators are formed by using time as an index (e.g. \texttt{Holds[t1,t2](effective(o,a,b,...))}). Modal approaches are attractive for their expressiveness, notational compactness and modularity. Although it is an appealing choice, in this paper we only consider methods based on first order logic since it is a more standard and widely used language, which turn out to be expressive enough for our requirements.

The trade-off among the various first order approaches is increased expressive power (which is limited in *temporal arguments*) vs. keeping the language simple, standard and ontologically clear (which are common objections to reification).

Temporal Incidence The general properties of the TIPs are specified by the *temporal incidence theory*. A classical example of temporal incidence axiom is *homogeneity* of \texttt{Holds}: if a proposition holds over a period it holds over any of its subtimes.

The Underlying Language Finally all previous temporal elements are integrated within a language which we refer to as the underlying language.

As an example, figure 4 shows how the influential Allen’s temporal representation approach [2] is described using the previous set of features.

3.2 Related Work

In legal reasoning systems, time is usually represented as any other attribute. Some systems are provided with an *ad hoc* temporal representation which may range from few built-in functions to a whole temporal subsystem.

Gardner [18], for instance, proposes a system for analysis of contract formation which includes a temporal component. The ontology is composed of time points and time intervals. A distinction is made between events and states (i.e. fluents). Time is treated as another argument. All the arguments are expressed through a proposition identifier, time among them, therefore the temporal qualification method here is a sort of token arguments method. Some relevant features, however, are less developed due to the bias towards the
Allen’s Interval-based Temporal Logic

<table>
<thead>
<tr>
<th>Allen’s Interval-based Temporal Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Ontology</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Time Theory</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Temporal Constraints</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Temporal Qualification</td>
</tr>
<tr>
<td>Temporal Incidence Theory</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Underlying language</td>
</tr>
</tbody>
</table>

Figure 4: Description of Allen’s temporal logic.

specific application: the time unit is fixed to days, only few point-to-point relations are considered (some temporal relations such as “follows” or “immediately” are mentioned but not supported), and issues such as temporal constraints and temporal incidence are not considered at all.

KRIP-2 [35] is a system for legal management and reasoning in patent law whose language supports temporal representation. The ontology is also based on instants and periods, and includes both convex metric and qualitative interval temporal constraints. Events are qualified with time by using the form

\[\text{event}(Id, class, conditions, time) \]

Although \(Id \) looks like a token symbol, it is not used for temporal qualification since \(time \) is also an argument.

These temporal representation approaches turn out to be adequate for the purposes of the system they are defined in. However, as a general approach to temporal representation in law they lack of some of the following: (i) an explicit identification of requirements from legal domains, (ii) a consideration of the results in temporal reasoning in AI, and (iii) a rational decision on each of the issues involved in a temporal representation framework. In previous sections we have already gone over (i) and (ii). In next section we go over (iii) but, before that, we analyze two pieces of work that do take care of these three issues.

The first is the event calculus (EC) [25], a temporal database management framework specified in PROLOG. Although not specifically intended for legal reasoning, EC has been used in several legal formalizations [39, 6]. According to the above features, EC is described as follows:
The second is presented in the context of the Chomexpert system [27, 36], an application on the Canadian Unemployment Insurance Law. The features of the temporal representation language, called EXPERT/T, are summarized as follows:

Event Calculus

<table>
<thead>
<tr>
<th>Event Calculus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Ontology</td>
<td>Units: Instant, period</td>
</tr>
<tr>
<td></td>
<td>Relations: (<, =, >)</td>
</tr>
<tr>
<td>Time Theory</td>
<td>Not defined</td>
</tr>
<tr>
<td>Temporal Constraints</td>
<td>Not defined</td>
</tr>
<tr>
<td>Temporal Qualification</td>
<td>For fluents: Temporal reification</td>
</tr>
<tr>
<td></td>
<td>For events: Token arguments</td>
</tr>
<tr>
<td>Temporal Incidence Theory</td>
<td>TIPs: {holds, holds_at}</td>
</tr>
<tr>
<td></td>
<td>Axioms: holds homogeneity</td>
</tr>
<tr>
<td>Underlying language</td>
<td>PROLOG</td>
</tr>
</tbody>
</table>

Although both works start from an analysis of temporal representation requirements, none of them identifies *repeated temporal references*, *multiple time levels* and *modularity* as relevant issues to address. This is the reason why some of the decisions made on the temporal features are not the most well-suited for formalizing legal texts. Both proposals (in EC only for fluents) use temporal reification as temporal qualification method. In next section we give a number of reasons to prefer the token arguments approach. Both use PROLOG as underlying language. A shortcoming of languages purely based on logic (logic programming among them) is their inefficiency in handling constraints. Proof-driven inference procedures turn out to perform poorly in constraint processing. The integration of a constraint specialist seems the natural way to overcome this problem. EC does not provide any “machinery” for processing temporal constraints. Although the period primitive is part of the time ontology, period relations and interval algebra constraints (*a la* Allen) are not supported. EXPERT/T processes qualitative constraints using Allen’s path-consistency propagation algorithm [36], but no type of metric constraints is supported.

Our approach here is based on integrating temporal constraints and the appropriate temporal qualification method into a logic-based language.
4 Legal Temporal Representation

In this section we present our proposal called LTR. We analyze each of section 3.1 features: for each feature we select the choice that best fits the requirements identified in section 2.

4.1 Time Ontology: Instants, Periods and Durations as Dates

Primitive Units Most temporal expressions in legal domains are associated with a period of time (e.g. “an offer being effective” in example 1, or the “qualifying” and “benefit” periods in example 2). Moreover, these expressions are often related by period relations such as “a period of validity of an offer happens during its period of existence” or “the qualifying period immediately precedes the benefit period”. Hence, it is natural to include the period as a time primitive. Do we also need instants? A brief analysis of legal texts yields several cases where the notion of instant appears:

1. The endpoints of the periods above are naturally associated with instants such as the moment where “the offer becomes effective” or the time as of which “the contract is no longer valid”.

2. Some events such as “the offer reaches the offeree” are viewed as instantaneous. These are called *instantaneous events*.

3. Norms often involve conditions about the state of a certain fluent at a certain instant. For example, “If ... and the offer is not withdrawn at the moment when it reaches the offeree and ... then ...”. Notice that, even if the “reach” event is modeled as durable, the condition may still refer to the instant at the end of that period.

4. Whenever metric temporal relations are involved, they are often stated as constraints between instants, (e.g. “a document sent by mail reaches its destination between 3 and 5 days later”).

Besides instants and periods, since legal domains involve numeric relations the *duration* unit is also needed.

In practice, time in legal domains is expressed in *clock/calendar units*. Accordingly we define our instant, period and duration constants in terms of *dates*, where a *date* is defined as an indexed sequence of values for clock/calendar units:

\[
\text{date} ::= \text{[second]} \text{| minute} \text{| hour} \text{| day} \text{| week} \text{| month} \text{| year}
\]

For example, 00'15'21h2d10m96y, 00'15'21h, 21h2d10m96y, 10w96y, 96y are well-formed dates. Some convenient shorthands are clock times (e.g. 00:15:21) and calendar dates (e.g. 2/10/96). Dates are used as both instant and duration constants. Period constants are defined as ordered pairs of dates. We use the conventional notation ()/[] to specify open/closed intervals. In addition, a set of indexed symbolic constants (i1, i2, ..., p1, p2, ...) is included for each unit to express times not associated to any specific temporal proposition.
Granularity The adequate time granularity may vary from one legal context to another, yet the basic structure of time and the properties of temporal constraints do not change. We address this issue by allowing the user to select the appropriate granularity. Date constants will be interpreted as either an instant or a period according to what is specified by the directive `granularity()` which takes a clock/calendar unit as its only argument. The issues of combining various granularities or dynamically changing among from one granularity to another are not addressed.

Primitive Relations Our proposal is based on the following primitive temporal relations: the 3 qualitative point relations `<, = and >`, the 5 qualitative point-interval relations `Before, Begin, ∈, End, After`, the 13 qualitative interval relations,

<table>
<thead>
<tr>
<th>Relation</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Before B</td>
<td></td>
</tr>
<tr>
<td>B After A</td>
<td></td>
</tr>
<tr>
<td>A Meets B</td>
<td></td>
</tr>
<tr>
<td>B Met_by A</td>
<td></td>
</tr>
<tr>
<td>A Overlaps B</td>
<td></td>
</tr>
<tr>
<td>B Overlapped_by A</td>
<td></td>
</tr>
<tr>
<td>A Starts B</td>
<td></td>
</tr>
<tr>
<td>B Started_by A</td>
<td></td>
</tr>
<tr>
<td>A During B</td>
<td></td>
</tr>
<tr>
<td>B Contains A</td>
<td></td>
</tr>
<tr>
<td>A Finishes B</td>
<td></td>
</tr>
<tr>
<td>B Finished_by A</td>
<td></td>
</tr>
<tr>
<td>A Equal B</td>
<td></td>
</tr>
<tr>
<td>B Equal A</td>
<td></td>
</tr>
</tbody>
</table>

and the duration relations `=` and `∈` used to express unary constraints only\(^9\) (e.g. `duration(tt1)=52w`, `begin(tt2)-end(tt1)∈[3w,4w]`). Binary duration constraints are an issue of current research [33].

Primitive Functions We define a set of logical functions between temporal units. Some of them are just the functional version of a temporal relation above:

- `Begin, End : period → instant`
- `D, , , , : instant × instant → period`
- `Duration : period → duration`

Besides, a set of interpreted\(^10\) temporal functions is required in practice. These functions are not involved in the term unification process but they are computed at inference time. This set includes functions such as the following:

- **Date arithmetics**, e.g. `+ : date × date → date`
- **Date predicates**, e.g. `is_holiday : date → {t/f}`
- **Date operations**, e.g. `next_holiday : date → day`

\(^9\)Although the relations are binary, only one of the arguments will be a duration variable.

\(^10\)Interpreted functions are also referred as built-in functions or operators.
Date transformations, e.g. \(\text{week.of} : \text{date} \mapsto \text{week} \)

Date set operations, e.g. \(\text{nth,latest,shorter.of} : \text{date-set} \mapsto \text{date} \)

A list of them is given in [50].

Time Theory Provided with the set of dates as our underlying model of time, the only structural property of time that demands a specific discussion here is the dense/discrete one. Dense models are required in domains where *continuous change* needs to be modelled such as qualitative physics. This is not the case of legal domains where the relevant changes are (viewed as) discrete (e.g. “signing a contract”, “receiving an offer”, “interruption of earnings”, ...) and the dates set has a basic, indivisible granularity. Therefore we adopt a *discrete* model of time which has two consequences. At the ontological level, we add two instant relations that are exclusive of discrete models: Previous, Next: \(\text{instant} \times \text{instant} \)^1. At the axiomatics level, we take a discrete time theory. It is based on \(\mathcal{IP} \) [46], a simple instant-period theory that accepts both discrete and dense models, plus few *discreteness* axioms. Both sets of axioms are given in appendix A.

The “Immediate” Relation Immediate is a difficult temporal term to characterize because its meaning may vary from one context to another. It may mean “in few seconds” or “in few hours”. Even in a fixed context, it may not have a precise interpretation. Our proposal is based on regarding immediate as a qualitative relation somewhere between Previous(Next) and \(\prec(\succ) \). This loose connection is formally specified by the following axioms over instants:

\[
\begin{align*}
\text{Im}^1_1 & : i \text{ ImmediateAfter } i' \Rightarrow i' \prec i \\
\text{Im}^1_2 & : i \text{ ImmediateBefore } i' \Rightarrow i' \prec i \\
\text{Im}^1_3 & : i \text{ Previous } i' \Rightarrow i \text{ ImmediateBefore } i' \\
\text{Im}^1_4 & : i \text{ Next } i' \Rightarrow i \text{ ImmediateAfter } i'
\end{align*}
\]

When Immediate is adjoined to period relations, it is interpreted as one of the following two:

1. The period relation \(\text{Meets(Meets)} \).

2. The first (last) of the set of periods that follow (precede) the current period.

The appropriate choice will depend on the context. It is left to the responsibility of the language user. We formalize some instances of immediate relations in the examples below.

1These relations will also be used in their functional form as time operators (e.g. \(\text{begin(tt1)} = \text{Next(end(tt2))} \)).
4.2 Temporal Constraints

Given the indefiniteness of temporal relations in some legal domains\(^\text{12}\) and the fact that existing temporal constraint algorithms scale down well in general, our framework includes almost all kinds temporal constraints:

- Qualitative constraints between instants (e.g. \(\text{begin}(tt1) \preceq \text{begin}(tt2)\))
- Metric constraints over instants (e.g. \(\text{begin}(tt2)-\text{begin}(tt1) \in \{[2d,3d],[1w,2w]\}\))
- Qualitative constraints between periods (e.g. \(\text{period}(tt3) \text{ Contains Overlaps period}(tt2)\))
- Qualitative constraints between an instant and a period (e.g. \(\text{instant}(tt2) \in 1/0\text{ct}/95\))
- Unary metric constraints over durations (e.g. \(\text{duration}(P1)=52w\))

Besides representing indefinite temporal relations, temporal constraints can be used to maintain a partial representation over time. Consider, for instance, a fluent \(f\) that is holding now. Unless we have specific information, it may cease holding any time as of the current time. It can be expressed by a constraint similar to \(\text{end}(f)\in [\text{now},+\text{inf}]\).

Temporal constraints are either unary or binary and in both cases the syntax has the form

\[
\text{time-term temporal-relation time-term}
\]

where the types of the time terms agree with the signature of the temporal relation. In unary constraints, one of the time terms is always ground. The formal syntax of the constraints is given in \([50]\).

Temporal constraints are processed by representing them in a constraint network and applying the available efficient techniques for processing different classes of constraints: qualitative point \([20,44,19,15]\), qualitative interval \([44]\) and metric point \([14,38]\). Also some progress has been achieved in combining metric-point and interval algebra constraints \([31,23]\). This currently is an area of active research and forthcoming results can be straightforwardly integrated within our framework.

4.3 Temporal Qualification: Token Arguments

Since repeated temporal references are pervasive in legal domains, temporal qualification methods based on tokens are more adequate. Among the two token-based methods

\(^\text{12}\)Although in most legal applications only some specific classes of temporal constraints are involved, different applications require different types of constraints. Moreover, some few domains (such as labor law) where the temporal issue is paramount and data may be imprecise, involve all kinds of temporal constraints.
prop osed in the literature, token arguments is better suited to our needs here as we shall see in a moment. In token arguments, something like an offer of the contract c from a to b is formalized as offer(c,a,b,...,tt1) where tt1 is a constant symbol of the new token sort13. We call these atomic formula token atoms. To improve readability we emphasize the role of the token argument with some syntactic sugar: instead of offer(c,a,b,...,tt1) (where tt1 is a token term) we shall write

\[
\text{tt1 : offer(c,a,b,...)}
\]

A set of functions, called token temporal functions14, that map tokens to their relevant times is defined. For example, begin(tt1) denotes the initial instant of the token denoted by tt1 and period(tt1) its period. TIPS are used to express that the temporal proposition is true at its associated time(s) as discussed below in section 4.4.

The token arguments method has several advantages:

1. Token symbols can be directly used as an argument of other predicates. In the above example, tt1 can be used in dispatch(tt1,a,b,...) to express that the offer tt1 is dispatched from a to b.

2. Different levels of time are supported by diversifying the token temporal functions. For instance, we may have begin_v(tt1) to refer to valid time and begin_t(tt1) to refer to transaction time. At the implementation level, a different temporal constraint network instance is maintained for each time level.

3. Token symbols can be used as the link to other knowledge modalities. For instance, in a multiple agents domain, the degree of belief of a proposition p(...) by an agent a can be represented by belief(a,tt1) where tt1 is a token from tt1:p(...). Deontic modalities can be represented by predicates (such as Ṍ for obligation and P for permission) that take a token as an argument. Furthermore, we can distinguish between the time where the deontic relation holds and the time of the object in the relation. For example, consider that a legal person a is obligated to offer a contract c to b. We represent the offer by tt1:offer(c,a,b,...), its relevant instants by begin(tt1) and end(tt1), the obligation by tt2:O(a,tt1) and the beginning and end instants of the obligation by begin(tt2) and end(tt2).

To increase notation conciseness we define syntactic sugar that allows omitting token symbols whenever they are not strictly necessary (i.e. whenever there are no references to them). There are two cases. In the first case two or more token atoms are collapsed into one. For instance, the facts

13The idea behind token arguments is similar to the Compound Predicate Formula approach [54] when applied to temporal pieces of information.

14To be distinguished from the temporal functions in section 4.1 with similar names but different signature.
in a rule that does not contain other references to tt2, can be rewritten as

\begin{align*}
&\text{tt1: } \text{offer}(c,a,b,\ldots) \\
&\text{tt3: } \text{reach}(\text{withdraw}(\text{tt1}),b)
\end{align*}

The second case is related with temporal incidence expressions and is explained in next subsection.

4.4 Temporal Incidence

We introduce the TIP \text{holds} to express holding of fluents (e.g. \text{holds}(\text{tt1})) and \text{occurs} to express occurrence of events. We call these atomic formulas \textit{incidence atoms}.

\textbf{Holds Incidence} There is a common agreement in the literature about the \textit{homogeneity} of holding of fluents [30, 2, 41]. Since our ontology includes both instants and periods, the holding of a fluent over a period should not constrain its holding at the period endpoints to avoid the \textit{dividing in instant problem} [49]. These properties are captured by a simple axiom which, expressed in temporal reification form, is as follows:

\begin{align*}
\forall f :: \text{fluent}, p :: \text{period} \ (\text{holds on}(f, p) \Rightarrow \forall i :: \text{instant} \ (\text{Within}(i, p) \Rightarrow \text{holds at}(f, i)))
\end{align*}

An important convention we make at this point is what we call \textit{token holds maximality}: A fluent token denotes a maximal piece of time where that fluent is true.

A consequence of this convention is the following \textit{Event Calculus} axiom:

\begin{quote}
"Any two periods associated with the same fluent are either identical or disjoint."
\end{quote}

In practice, one is interested in knowing whether the current token database entails that a certain fluent is true at a certain time. To this purpose we define the following TIPs:

\begin{align*}
&\text{holds on}(\text{fluent}, \text{period}) \\
&\text{holds at}(\text{fluent}, \text{instant})
\end{align*}

Notice that these are neither syntactic sugar of the above nor temporal reification TIPs, but they are new TIPs with the following existential meaning. Given a fluent \(f \), a period
\[p \text{ and an instant } i: \]
\[
\text{holds_on}(f, p) \equiv \\
\exists TT TT: f \land \text{holds_on}(TT) \land \\
p \text{ During Starts Finishes Equal period}(TT)
\]
\[
\text{holds_at}(f, i) \equiv \\
\exists TT TT: f \land (\text{holds_on}(TT) \land i \text{ Within period}(TT) \lor \\
\text{holds_at}(TT) \land i = \text{instant}(TT))
\]

where \(TT \) is a variable of the fluent token sort.

Occurs Incidence There is no common agreement on the characterization of the occurrence of events [2, 41, 17]. As a matter of fact, no evidence on the need for any specific theory of events is found in practice. However, we keep occurs TIP to express the actual occurrence of an event and, thus, to allow describing events whose occurrence is unknown (e.g. to express the possibility or the obligation for that event to occur).

Some syntactic sugar for incidence expressions is defined to omit token symbols. The expression

\[
\text{TT:become-effective(...)} \\
\text{Occurs}(TT) \\
\text{instant}(TT) = I
\]

will be written as

\[
\text{Occurs(become-effective(...),I)}
\]

The formal syntax for incidence atoms is given in [50].

4.5 Underlying Language

Our proposal is independent of the underlying language, as long as it is a many-sorted language. The sorts ser must include our three temporal sorts, (namely instants, periods and durations), and the two tokens sorts (namely fluent and event tokens).

In this section we address few additional relevant features:

Negation Negation of token and incidence atoms will be handled by the standard mechanism of the underlying language. Negation of temporal constraints is less problematic since temporal constraints exhibit the following nice property:

Proposition 1 In a constraint language that does not restrict non-convex constraints, any negated constraint can be expressed as an equivalent non-negated constraint form.
For example $- (t \leq t') \equiv t > t'$, or $- (t - t' \in \{[3,5]\}) \equiv t - t' \in \{[\neg \infty,3),(5,\neg \infty]\}$. Hence negated constraints will be asserted and queried by regular constraint propagation and entailment.

Token Sets Some applications require dealing with sets of temporal elements15. For instance, let us consider the following piece of text from example 2:

> ... (b) the period that begins on the commencement date of an immediately preceding benefit period and ends with the end of the week preceding the commencement of a benefit period under subsection 9(1).

Since for a given person there might be several benefit periods, a possible interpretation for “immediately preceding benefit period ...” is, as noted in section 4.1, “the last of all benefit periods before ...”. Thus, we need to refer to the set of all those “benefit period” tokens that are Before ... Coping with the notion of set requires higher order expressiveness. Some research has been done on extending first order languages in this direction \cite{28, 26, 1, 11, 24, 12}. We restrict the development here to the context of a token-based approach where the set notion is used to specify sets of temporal tokens that satisfy a certain condition. The syntax we propose is as follows16:

\[
\text{token_set}([[\text{temporal_atom}]^+])
\]

where \text{temporal_atom} can be either a token atom, an incidence atom or a temporal constraint. The token set operator binds the token variables appearing in the token atoms (e.g. the variable TT3 in TT3: benefit-period(TT1)) to all those tokens of that relation that satisfy all the conditions inside the form. For instance, the example above is formalized as

\[
\text{token_set}(\text{TT3: benefit-period(TT1)} \quad \text{period(TT3) Before Meets period(TT2)})
\]

We define a number of practical operators on sets of tokens. For instance, \texttt{latest} denotes the last token of that set according to the temporal ordering. These operators can be applied on token set variables (e.g. \texttt{latest(TT3)}). Some of these operators admit an alternative first order formulation by splitting the conditions into different rules and using negation, however this approach is clearly impractical17.

15This issue is not included in the requirements list (section 2) because the notion of set is not strictly a temporal representation feature, but the notion of set of temporal elements is relevant here as we discuss in this section.

16We are not particularly happy with this syntax since does not follow a pure declarative style, but it turns out to be adequate in practice.

17As an exercise, you may try to use this approach to specify the operator \texttt{4th} which selects the 4th token that satisfies certain conditions.
Token Attributes The token arguments method allows to detach time from its temporal proposition. The same can be done for the remaining attributes of the proposition to enhance language flexibility. For example, we can refer to the offeror of \(\text{tt1: offer}(c,a,b,\ldots) \) by \(\text{offeror}(ext{tt1}) \). Now attribute names are represented explicitly. It requires (i) *declaring* the attributes for each predicate,

\[
\begin{align*}
\text{Attribute}(\text{what, offer}) \\
\text{Attribute}(\text{offeror, offer}) \\
\text{Attribute}(\text{offeree, offer}) \\
&\ldots
\end{align*}
\]

for what we shall use the shorthand

\[
\text{Attributes}(\text{offer}, \{\text{what, offeror, offeree, } \ldots\})
\]

and (ii) referring to the attributes of a particular token. Our \(\text{tt1: offer}(c,a,b,\ldots) \) can be regarded as a shorthand\(^{18}\) for

\[
\begin{align*}
\text{what}(&\text{tt1})=c \\
\text{offeror}(&\text{tt1})=a \\
\text{offeree}(&\text{tt1})=b \\
&\ldots
\end{align*}
\]

Summary The set of choices that defines our proposal is summarized in the following table:

<table>
<thead>
<tr>
<th>LTR</th>
<th>Time Ontology</th>
<th>Time Theory</th>
<th>Temporal Constraints</th>
<th>Temporal Qualification</th>
<th>Temporal Incidence Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Units: Instants, periods, durations with clock/calendar forms as constants.</td>
<td>(\mathcal{TP}) axioms + discreteness axioms + (\text{Im}_{1,4}) axioms (The axioms are given in appendices A.1 and A.2)</td>
<td>Combined (metric) Point - Interval Constraints</td>
<td>(\text{Token arguments})</td>
<td>(\text{TIPs:} \ {\text{holds, occurs, holds at, holds on}})</td>
</tr>
<tr>
<td></td>
<td>Relations: (\prec, \text{begin, end, Next, Previous, ImmediateBefore, ImmediateAfter})</td>
<td></td>
<td></td>
<td></td>
<td>(\text{Axioms:} \ \text{holds and holds on homogeneity})</td>
</tr>
</tbody>
</table>

\(^{18}\)The translation will take the order of the attributes from an explicit declaration supported by the undelaying language.
5 Examples

In this section we illustrate the application of our approach as we revisit the two examples introduced in section 1. We take a rule-based language as underlying language without making any assumption about the inference regime. A set of facts in both the body and the head of a rule is interpreted as a conjunction. The marks [[...]] indicate pieces of text that have not been formalized because either their meaning is not clear, their main emphasis is not temporal or they are merely redundant. The mark % Implicit indicates pieces of formal knowledge that are not directly derived from the legal text. Ontological elements resulting from a conceptualization process are emphasized in bold. Temporal relations are underlined.

5.1 Formalizing the CISG Example

The CISG is intended to provide a normative frame for international commerce. Part II of the law is devoted to the formation of contracts. For instance, it is used to determine when a contract is concluded. Queries like this can be answered in the LTR formalization we present next.

The predicate attributes used in the example are:

\begin{itemize}
 \item Attributes(contract, {offeror, offeree, class, type, qp-provision})
 \item Attributes(offer, {what, offeror, offeree, is-irrevocable, offer-begin, offer-end})
 \item Attributes(acceptance, {what})
 \item Attributes(effective, {what})
 \item Attributes(concluded, {what})
 \item Attributes(withdrawn, {what})
 \item Attributes(accepted, {what})
 \item Attributes(become-effective, {what})
 \item Attributes(become-concluded, {what})
 \item Attributes(reach, {what, who})
 \item Attributes(dispatch, {what, who, to-whom, type, stamped-date})
\end{itemize}

A granularity of days might seem fine enough for this example, however some occurrences of the "immediate" relation require moving to a finer granularity:

\begin{itemize}
 \item Granularity(second)
\end{itemize}

A law article is formalized as (a number of) rules that express the relations between occurrence of events under certain conditions and their effects in terms of the holding of derived
fluents. For instance, in example 1, “Article 15(1) An offer becomes effective when it reaches the offeree.” is formalized as

If TT1: offer(C,OR,OE,...) TT2: reach(TT1,OE) Occurs(TT2)
\neg Holds_at\(\text{withdrawn}(TT1),\text{instant}(TT2)\) % Implicit

then Occurs\(\text{become-effective}(TT1),\text{instant}(TT2)\)

If TT2: become-effective\(TT1\) % Implicit Occurs(TT2)
then Holds\(\text{effective}(TT1),\text{instant}(TT2)\)

Next we include few additional interesting articles also from CISG part II.

Article 18(2) An acceptance of an offer becomes effective at the moment the indication of assent reaches the offeror. An acceptance is not effective if the indication of assent does not reach the offeror within the time he has fixed [[or, if no time is fixed, within a reasonable time, due account being taken of the circumstances of the transaction, including the rapidity of the means of communication employed by the offeror.]]

If TT1: offer(_,OR,_,______,0\text{Begin},0\text{End}) TT2: acceptance\(TT1\) TT3: reach\(TT2,OR\) Occurs(TT3)

\quad \text{instant}(TT3) \in [0\text{Begin},0\text{End}]
\quad \text{Holds_at}(\text{accepted}(TT1),\text{instant}(TT3)) % Implicit

then Occurs\(\text{become-effective}(TT1),\text{instant}(TT3)\)

Implicit from Article 18(2) When an acceptance of an offer of a contract becomes effective the contract becomes concluded.

If TT2: become-effective\(\text{acceptance}(\text{offer}(TT1,___________,))\) Occurs\(TT2\)
then Occurs\(\text{become-concluded}(TT1),\text{instant}(TT2)\)

If TT2: become-concluded\(TT1\) % Implicit Occurs\(TT2\)
then Holds\(\text{concluded}(TT1),\text{instant}(TT2)\)
Article 18(2) (cont) An oral offer must be immediately accepted [[unless the circumstances indicate otherwise.]]

If TT1: offer(...)
 TT2: dispatch(TT1,_,oral,_)
 Occurs(TT2)
then offer-begin(TT1) ← instant(TT2)
 offer-end(TT1) ← ImmediateAfter(instant(TT2))

Article 20(2) Official holidays or non-business days occurring during the period for acceptance are included in calculating the period. However, if a notice of acceptance cannot be delivered at the address of the offeror on the last day of the period because that day falls on an official holiday or a non-business day at the place of business of the offeror, the period is extended until the first business day which follows.

If TT2: offer(...) Is_holiday(offer-end(TT2))
then offer-end(TT2) ← next_holiday(offer-end(TT2))

Temporal database projection would be sufficient to answer the intended queries. The bottom-up inference procedure would make an intensive use of the specialized modules for (i) constraint processing and (ii) token management. The result will be a temporal map composed of instants and periods for the instances of events and fluents, together with the temporal constraints holding among them. For example, given the input formalized by the following facts

\begin{tabular}{l}
\tt1: contract(a,b,sale,machine,_) \\
\tt2: offer(tt1,a,b,[-\infty,\infty],[-\infty,\infty]), instant(tt2)\in 1/0ct/95 \\
\tt3: dispatch(tt2) \\
\tt4: reach(tt2,b), instant(tt4)\in 5/0ct/95 \\
\tt5: withdrawal(tt2) \\
\tt6: dispatch(tt5,a), instant(tt6)\in 7/0ct/95 \\
\tt7: reach(tt5,b), instant(tt7)\in 11/0ct/95 \\
\tt8: acceptance(tt2) \\
\tt9: dispatch(tt8,b), instant(tt8)\in 10/0ct/95 \\
\tt10: reach(tt8,a), instant(tt10)\in 12/0ct/95 \\
\end{tabular}

the time map shown by figure 5 would be generated. The query “Is the contract concluded” will be affirmatively answered by YES, as of October 12 '95. The sequence of rules

\footnote{Notice that “must be” here does not denote obligation but a temporal constraint.}

\footnote{As in the TMM system [13, 37] for example.}
involved in deriving token tt1.2: concluded(tt2) can be easily recorded and returned as justification.

Figure 5: CISG example.

5.2 Formalizing the Canadian Unemployment Insurance Law Example

A key section of the Canadian Unemployment Insurance Law [36] is intended to determine whether a person is eligible for benefits or not. It involves determining a qualifying period (the period during which the person has been employed) and a benefit period (the period during which the person should receive benefits).

The following predicate attributes need to be declared:

Attributes(Insured-person, {...})
Attributes(Benefit-period, {whom})
Attributes(Qualifying-period, {whom})
Attributes(Interruption-of-earnings, {what})
Attributes(Initial-claim, {what})

For a proper formalization of the temporal aspects of this act, a granularity of days is fine enough.
Granularity(day)

Next we show the sections that address the assessment of the benefit and qualifying periods and their formalization in LTR:

Section 7(1) [...] the **qualifying period** of an **insured person** is the shorter of: (a) the period of fifty-two weeks that immediately precedes the **commencement** of a **benefit period** under subsection 9(1), and (b) the period that begins on the **commencement** date of an immediately preceding **benefit period** and ends with the **end of the week** preceding the **commencement** of a **benefit period** under subsection 9(1).

If TT1: insured-person()
TT2: benefit-period(TT1)
duration(P1)=52w
P1 Meets period(TT1)
token_set(TT3: benefit-period(TT1)
period(TT3) Before Meets period(TT2))
begin(P2)=begin(latest(TT3))
end(P2)=end_of_week(week_before(week_of(begin(TT2))))
then TT5: qualifying-period(TT1)
period(TT5)=shorter_of([P1,P2])

Section 9(1) [...] A **benefit period** begins on the **Sunday** of the **week** in which (a) the **interruption of earnings** occurs, or (b) the **initial claim** for benefit is made, whichever the later.

If TT1: insured-person()
TT2: interruption-of-earnings(TT1)
Occurs(TT2)
TT3: initial-claim(TT1)
Occurs(TT3)
then TT4: benefit-period(TT1)
begin(TT4)=sunday_of(week_of(latest_of(instant(TT2),instant(TT3))))
6 Conclusions

We explored the representation of time and temporal information in legal domains in the tradition of using logic to formalize law. We propose LTR, a temporal representation framework described by the following choices on the temporal reasoning features:

<table>
<thead>
<tr>
<th>LTR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Ontology</td>
<td>Units: Instants, periods, durations with clock/calendar forms as constants.</td>
</tr>
<tr>
<td></td>
<td>Relations: {<, begin, end, Next, Previous, ImmediateBefore, ImmediateAfter}</td>
</tr>
<tr>
<td>Time Theory</td>
<td>\mathcal{P} axioms + discreteness axioms + $\mathbf{Im}_{1,4}$ axioms (The axioms are given in appendices A.1 and A.2)</td>
</tr>
<tr>
<td>Temporal Constraints</td>
<td>Combined (metric) Point – Interval Constraints</td>
</tr>
<tr>
<td>Temporal Qualification</td>
<td>Token arguments</td>
</tr>
<tr>
<td>Temporal Incidence Theory</td>
<td>TIPs: holds, occurs, holdsAt, holdsOn</td>
</tr>
<tr>
<td></td>
<td>Axioms: holds and holdsOn homogeneity</td>
</tr>
</tbody>
</table>

Our approach is independent of the underlying representation language and the specific legal reasoning application. We discussed its adequacy wrt. the requirements identified in legal domains. LTR is currently being used within a rule-based language in the formalization of the Convention for International Sale of Goods.

In this work we did not address the issues of (i) representing periodic occurrences, (ii) temporal non-monotonic reasoning, and (iii) handling time of legal statutes. For instance, tasks that involve meta-reasoning about the validity of statutes and laws over time are out the scope of our approach. This is matter of our current research.

References

[40] M. Sergot. Tutorial notes: Using logic for knowledge representation in legal knowledge based system. 5th International Conference on Artificial Intelligence in Law, Maryland, May 1995.

A A Discrete Theory of Time

A.1 IP Theory

\(\mathcal{IP}\) is defined upon a structure composed of two sorts of symbols, instants (\(I\)) and periods (\(P\)) which are formed by two infinite disjoint sets of symbols, and three primitive binary relation symbols \(\prec: I \times I\) and \(\text{begin}, \text{end}: I \times P\).

The first order axiomatization of \(\mathcal{IP}\) is as follows:

\[
\begin{align*}
\text{IP}_1 & : \neg (i \prec i) \\
\text{IP}_2 & : i \prec i' \Rightarrow \neg (i' \prec i) \\
\text{IP}_3 & : i \prec i' \land i' \prec i'' \Rightarrow i \prec i'' \\
\text{IP}_4 & : i \prec i' \lor i \prec i' \land i = i' \\
\text{IP}_{5.1} & : \exists i' (i' \prec i) \\
\text{IP}_{5.2} & : \exists i' (i \prec i') \\
\text{IP}_6 & : \text{begin}(i, p) \land \text{end}(i', p) \Rightarrow i \prec i' \\
\text{IP}_7.1 & : \exists i \text{ begin}(i, p) \\
\text{IP}_7.2 & : \exists i \text{ end}(i, p) \\
\text{IP}_{8.1} & : \text{begin}(i, p) \land \text{begin}(i', p) \Rightarrow i = i' \\
\text{IP}_{8.2} & : \text{end}(i, p) \land \text{end}(i', p) \Rightarrow i = i' \\
\text{IP}_9 & : i \prec i' \Rightarrow \exists p (\text{begin}(i, p) \land \text{end}(i', p)) \\
\text{IP}_{10} & : \text{begin}(i, p) \land \text{end}(i', p) \land \text{begin}(i', p') \land \text{end}(i'', p') \Rightarrow p = p'
\end{align*}
\]

\(\text{IP}_1 \div \text{IP}_4\) are the conditions for \(\prec\) to be a \textit{strict linear order}—namely irreflexive, asymmetric, transitive and linear—relation over the instants\(^{21}\). \(\text{IP}_5\) imposes unboundness on this ordered set. \(\text{IP}_6\) orders the extremes of a period. This axiom rules out durationless periods which are not necessary since we have instants as a primitive. The pairs of axioms \(\text{IP}_{7.1}\) and \(\text{IP}_{8.1}\) formalize the intuition that the beginning and end instants of a period always \textit{exist} and are \textit{unique} respectively. Conversely, axioms \(\text{IP}_9\) and \(\text{IP}_{10}\) close the connection between instants and periods by ensuring the \textit{existence} and \textit{uniqueness} of a period for a given ordered pair of instants.

See [46] for a characterization of the models and relation with other time theories.

A.2 Discreteness Axioms

The discreteness axioms under an unbounded time are as follows:

\[
\begin{align*}
\text{IP}_{di1} & : \text{Previous } i' \iff \text{Next } i \\
\text{IP}_{di2} & : \text{Previous } i' \Rightarrow i \prec i' \\
\text{IP}_{di3} & : \exists i' \text{ Previous } i' \\
\text{IP}_{di4} & : \exists i' \text{ Next } i' \\
\text{IP}_{di5} & : \exists i' \text{ Next } i' \\
\text{IP}_{di6} & : \text{Previous } i' \Rightarrow \neg \exists i'' (i \prec i'' \prec i')
\end{align*}
\]

\(^{21}\)Notice that \(\text{IP}_1\) is actually redundant since it can be derived from \(\text{IP}_2\). We include it for clarity.