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Abstract

Despite the ubiquity of time and temporal references in legal texts, their formal-
ization has often been either disregarded or addressed in an ad hoc manner. In this
paper we address this issue from the standpoint of the research done on temporal
representation and reasoning in Al. We identify the temporal requirements of legal
domains and propose a temporal representation framework for legal reasoning which
is independent of (i) the underlying representation language and (ii) the specific legal
reasoning application. The approach is currently being used in a rule-based language
for an application in commercial law.

1 Introduction

Automated legal reasoning systems require a proper formalization of time and temporal
information [40, 29]. Quoting L. Thorne McCarty [29]:

“...time and action are both ubiquitous in legal domains. ...

Notions related to time are found in major legal areas such as labor law (e.g. the time
conditions to compute benefit periods), commercial law (e.g. the time of the information
used to establish the validity of agreements or to calculate damages' [7]), criminal law
(e.g. the temporal information known about the various elements involved in the analysis
of a criminal case), patent law (e.g. the time constraints formulated in regulations for
applying to patents). Moreover, many procedural codes associated with these statutes
usually require the management of timetables based on some temporal representation.
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We elaborate on two representative examples. The first example is taken from the

United Nations Convention for International Sale of Goods (CISG)[55].

Example 1 (CISG) Article 15: An offer becomes effective when it reaches the offeree.
An offer, even if it is irrevocable, may be withdrawn if the withdrawal reaches the offeree
before or at the same time as the offer.

This article contains various temporal aspects that are common in legal texts. We find
denotations for events that happen at a certain time (e.g. “reach”), objects that have a
certain lifetime (e.g. “offer”, “withdrawal”), properties that change over time (e.g. “an
offer is effective”) and temporal relations (e.g. “before or at the same time”).

We borrow our second example from [36].

Example 2 Nezt two articles belong to the Canadian Unemployment Insurance Law:
Section 9(1) /...] A benefit period begins on the Sunday of the week in which

(a) the interruption of earnings occurs, or (b) the initial claim for benefit is made,
whichever the later.

Section 7(1) [...] the qualifying period of an insured person is the shorter of (a) the
period of fifty-two weeks that immediately precedes the commencement of a benefit period
under subsection 9(1), and

(b) the period that begins on the commencement date of an immediately preceding benefit
period and ends with the end of the week preceding the commencement of a benefit period
under subsection 9(1).

In addition to denotations of temporal events (e.g. “interruption of earnings”, “claim for
benefits”), we find references to temporal units such as “qualification period” and “benefit

period”, and temporal relations such as “begins”, “ends”, “period of fifty-two weeks”,
“the period that precedes”, “the period that immediately precedes” and a rich variety of
temporal operators such as “the shorter of ...”7, “the Sunday of the week...”, “the later
of ...7.

This work belongs to the tradition of formalizing law using logic. Despite the prominent
presence of temporal references in legal texts, temporal representation and reasoning is an
issue that legal reasoning projects have often either disregarded or addressed in an ad hoc
manner. Furthermore, it is a surprising situation given the prolific research activity done
on temporal reasoning in Al during the past 15 years (see [47] for a survey). This may be
due to the fact that, quoting Marek Sergot [40], “it looks like a huge topic”. Another reason
could be the utilization of techniques traditionally disconnected from legal reasoning such
as constraint satisfaction.

Our goal here is to provide a representation framework well-suited to formalizing the
temporal aspects of law in its different areas. We build upon results from the research area
of temporal reasoning in AL

We proceed by first identifying the requirements of legal domains (section 2). Then
we outline the features that characterize a temporal representation framework and point



out some of the choices proposed for each feature (section 3.1). After that we overview
related work (section 3.2) and, finally, we systematically discuss each feature and select the
choice that best addresses the requirements (section 4). We illustrate the adequacy of our
proposal, called LTR, by revisiting the examples above. The guarantee of the applicability
of LTR is conditioned to the validity of the requirement analysis we did.

The contribution of this paper is twofold: (i) as a reference for analyzing the temporal
representation in existing legal reasoning systems, and (ii) as the foundation in building
the “temporal component” of a legal reasoning application. Temporal representation and
reasoning is a very broad area and covering everything would be too ambitious for a single
paper, even if its focuss is on a particular application area. The following issues are out of
the scope of this paper: (i) periodic occurrences, (ii) handling time associated with legal
provisions, and (iii) non-monotonic temporal reasoning.

Terminology Before going ahead we define few terms common in the temporal reason-
ing literature used throughout this paper. By temporal expression we mean an expression
whose denotation is naturally associated with a specific time. In the above examples, “offer
is effective” and “interruption of earnings” are temporal expressions. We shall distinguish
between fluents when they are expressions that describe the state of affairs in a given do-
main (“offer is effective”), and events when they represent occurrences that may change
that state (“interruption of earnings”)?. A temporal proposition is a logical proposition rep-
resenting a temporal expression. By temporal relation we mean a relation whose arguments
are all temporal, and by temporal function a function whose range is temporal?.

2 Requirements

In this section we identify the requirements of a temporal representation language for for-
malizing law. The analysis is done at the two main general levels: notational efficiency,
which comprises issues such as expressiveness, modularity, readability, compactness, flexi-
bility, ... and computational efficiency. Finally, we explain the issues taht have not been
considered in this work.

2.1 Notational Efficiency Requirements

Repeated Temporal References A repeated temporal reference is a temporal expres-
sion that includes a reference to another temporal expression. Repeated temporal refer-
ences abound in legal texts. Let have a look on a piece from example 1:

“An offer, even if it is irrevocable, may be withdrawn if the withdrawal
reaches the offeree before or at the same time as the offer.”

24Offer” can be modelled as an event, if we refer to the offer object, or as a fluent if we refer to the
“existence of the offer”.
3As opposed to a function whose interpretation is time-dependent.



contract(...) f {

offer(', .) S

withdrawal(', ...) i ! —
ey e
| | | | |
T T T T T
t1 t2 t3 t4 t5
PROPOSITIONS TIME

Figure 1: Repeated temporal reference example.

The “reach” event makes reference to a “withdrawal” of an “offer” of a “contract”, all
these being temporal objects with their own associated times of occurrence (see figure 1).
In addition, some implicit constraints may hold among these various times. For example,
the “reach” event cannot happen outside the lifetime interval of the offer.

Temporal Operators Legal texts with temporal references often involve a (sometimes
large) number of temporal operators. Example 2, for instance, involves a function that
returns “the shorter of” two periods or a funtions that returns the “the latest of” two
dates.

Precise and Indefinite Temporal Relations In addition to exact times and dates

(e.g. 3:15pm, October 2nd 1996), many different classes of “less precise” temporal relations

[44

appear in legal texts. The following are some examples: “... before or at the same time

than ...”7, “... during ...”, “... contains or overlaps ...”, “... immediately precedes
7o % .. in few days ...7, “... between 2 or 3 days ...”, “... either 2 or 3 days if ...
or between 1 and 2 weeks if ...”. These relations are called indefinite since they represent

a set (interpreted as a disjunction) of possible times. When the set is not convex we talk
about non-conver or disjunctive relations.

Indefinite relations are often present in the description of legal cases (e.g.
“...few days later the message was dispatched”, “the transaction took a couple of weeks”,

“between 9:00 and 10:00 the suspect was seen at ...”).

Several Temporal Levels Some legal applications require distinguishing between dif-
ferent levels of temporal information [40]. A common distinction (often made in database
systems [42]) is real time (in databases called valid time) vs. belief time (i.e. transaction
time).

Modularity Since legal domains usually involve knowledge related to various notions
such as evidence, belief, intention, obligation, permission, uncertainty, modularity is a
central issue. A desirable feature of a temporal representation is that it allows for an
orthogonal combination with other knowledge modalities.



2.2 Computational Efficiency Requirements

The ability to efficiently encode and process temporal relations may have a high impact
on the performance of the overall procedure from both points of view: space and time.

The size of the temporal representation is polynomial in the number of temporal propo-
sitions and the number of possible temporal relations which, in turn, depends on the model
of time adopted (bounded, dense/discrete, etc.).

The time performance of answering temporal queries can be strongly influenced by
the class of temporal relations supported. The worst-case time complexity of checking
consistency of a set of temporal constraints can at best be linear in the number of relations,
but if the indefiniteness of temporal relations is non-conver it is unlikely that the problem is
tractable [51, 14]. In most legal scenarios the ratio number of temporal relations vs. number
of temporal propositions is relatively low and the amount of non-convex indefiniteness is
small. However, some cases are found in specific domains (such as in some criminal cases)
or some tasks (e.g. legal planning) where multiple temporal possibilities need to be taken
into consideration.

In both, easy and hard cases, the capability of efficiently answering queries about
temporal relations is an important issue. In the easy case because the number of temporal
propositions involved in legal scenarios may be large. In the hard case because of the
potential dramatic performance degradation due to the combinatorial nature of non-convex
relations.

2.3 Issues not Addressed

Periodic Occurrences Although not very common, some legal norms and cases require
the expression of periodic events such as “pay X once every month” or “get a supply twice
a week from 1/1/95 to 1/1/96”. This is an issue of current reseach [32, 53] that we shall

not address here.

The Time of Law Law changes over time. New norms are introduced and some existing
ones are derogated over time. A proper account of these changes is obviously important to
correctly interpret the law [9, 10]. This is a fairly open issue in automated legal reasoning
which could be handled by means of a temporal representation that associates time with
objects more complex than atomic propositions such as rules or contexts. Our investigation
here is restricted to time associated to atomic propositions.

Non-monotonic Temporal Reasoning Rescinding agreements, withdrawing deci-
sions, handling retro-active provisions?, ... all require non-monotonic reasoning capabili-
ties. It can be considered a “temporal” issue since non-monotonic assumptions and infer-
ence rules can be formulated using the underlying temporal language. Moreover, there is

a non-monotonic reasoning specificly temporal: the one that concerns assumptions about

4Retro-active effects are also related to the issue of law change.



temporal relations. For instance, we may want to assume that a fluent over time as long
as 1t 1s consistent with the rest of the information. This matter is out of the scope of this

paper.

3 Temporal Representation: Background

3.1 Features

A temporal reasoning formalism is defined by a set of features that we survey in this
section. They are graphically® presented in figure 2.

[ Temporal Qualification M ethod }

$

‘ Temporal Incidence Theory ‘

Time Ontology Temporal Constraints System

‘ T. C. Propagation Algorithms ‘

abenbue 7 Bulf|epun

Figure 2: The features of a temporal representation framework.

Time Ontology The most basic feature is the ontology of time, namely the set of prim-
itive temporal units and primitive temporal relations. The two classical approaches are
instants (or time points) and periods (or time intervals). As instant primitive relations,
for example, one can take the three simple qualitative relations between two points in a
line: <, = and >. When temporal relations involve numeric information, an additional
ontological unit is needed: the duration. A duration is the distance between two time
points®.

A related ontological issue is granularity. From a semantical point of view, granularity
is defined as the primitive unit of “real time”” over which the primitives of our time
ontology are interpreted. From a practical point of view, the granularity is determined
by the smaller unit used to specify durations in a given context. Different contexts may
require different granularities and systems dealing with different contexts may require a
mechanism to switch from one granularity to another.

>Labels in bold indicate framework components and the ones in italics are either a set of axioms or a
set of algorithms based on a set of axioms. Imbricated blocks denote part-of dependencies whereas arrows
represent a design dependency, i.e. the design of the source has implications on the design of the target.

SNote that instant-to-instant numeric relations, period lengths and absolute times (such as dates) can
all be regarded as durations.

"“Real time” here means time that can be measured by an existing device.



The intuitions about the structure of time (such as the type of ordering,
bound/unbound, discrete/dense, ...) are specified by a set of axioms called the the-
ory of time. A lot of work has been done on the study of theories based on instants
[45] and periods [52, 21, 34, 3], on deriving one primitive from the other, and on defining
ontologies that combine them [45, 43, 4, 8, 16, 49].

Temporal Constraints The primitive temporal relations and (logical) combinations
of them are naturally regarded as constraints. For example, “the time point p is before
or after the time point p’” is a constraint that restricts the set of possible values for
the relative temporal distance between p and p’. When the set is non-convex we talk
about non-convex constraints. This together with the temporal units and the allowed
temporal constraints determine the temporal constraint class. For instance, the constraint
in the above example is a non-conver qualitative point constraint. A temporal constraint
formalism must be provided with a set of specialized temporal constraint satisfaction
algorithms [44, 19, 38].

Temporal Qualification A central feature is the method employed to abscribe time to
temporal propositions. It usually involves a number of newly defined predicates such as
Allen’s Holds or Shoham’s True which express that a given proposition is true at a certain
time. These are called temporal incidence predicates (TIP). Figure 3 presents a scheme of
the various temporal qualification methods proposed in the literature.

Add_argument(time) Reify_into(token)

Temporal Arguments Token Reification

effective(o,a,b,...,t1,t2) hol ds(effective(o,a,b,...,t1,t2))
Classical Logic
Reify_into(type) + Add_arguments(time) -
Atomic Formula yinto(type) a9 s(time) Temporal Reification
T
effective(o,a,b,...) hol ds(effective(o,a,b,...),t1,t2)

‘ Add_argument(token)

Token Arguments

) . effective(o,a,b,...,tt1l),holds(ttl),begin(ttl)=t1, end(ttl)=t2
First-order Logic ( ) (tt1), begin(ttl) (tt1)

Modal Logic
| Modal Temporal Logics

Hol ds[t1,t2] (effective(o,a,b,...))

Figure 3: Temporal qualification methods in Al.

The most straight forward approach, called temporal arguments [22, 5]®, proposes intro-
ducing time as one or more additional arguments (e.g. effective(o,a,b,...,t1,t2)).
A variation called token arguments [13, 17] uses a third element, the temporal token or to-
ken which links propositions with their relative times (e.g. effective(o,a,b,...,tt1),

8This is the approach classically used in databases.



begin(tt1)=t1). A token represents a particular temporal instance of a given temporal
proposition.

The temporal reification approach [30, 2] models temporal propositions as logical terms
called propositional terms. A propositional term is associated with its times by making
them all the arguments of a TIP (e.g. Holds(effective(o,a,b,...),[t1,t2])). A
variant called token reification [48] proposes first adding time as argument and then reifying
(e.g. holds(effective(o,a,b,...,t1,t2))). In this case the propositional term denotes
a temporal token.

Finally, modal approaches introduce a number of temporal modal operators that qualify
propositions. Classically temporal modal operators are relative. For instance, given a
proposition ®, F® means ® is true in some future, G® means ® is true in every future time,
N® means ¢ is true at next time. More general, absolute operators are formed by using
time as an index (e.g. Holds[t1,t2] (effective(o,a,b,...))). Modal approaches are
attractive for their expressiveness, notational compactness and modularity. Although it is
an appealing choice, in this paper we only consider methods based on first order logic since
it is a more standard and widely used language, which turn out to be expressive enough
for our requirements.

The trade-off among the various first order approaches is increased expressive power
(which is limited in temporal arguments) vs. keeping the language simple, standard and
ontologically clear (which are common objections to reification).

Temporal Incidence The general properties of the TIPs are specified by the temporal
incidence theory. A classical example of temporal incidence axiom is homogeneity of Holds:
if a proposition holds over a period it holds over any of its subtimes.

The Underlying Language Finally all previous temporal elements are integrated
within a language which we refer to as the underlying language.

As an example, figure 4 shows how the influential Allen’s temporal representation ap-
proach [2] is described using the previous set of features.

3.2 Related Work

In legal reasoning systems, time is usually represented as any other attribute. Some systems
are provided with an ad hoc temporal representation which may range from few built-in
functions to a whole temporal subsystem.

Gardner [18], for instance, proposes a system for analysis of contract formation which
includes a temporal component. The ontology is composed of time points and time inter-
vals. A distinction is made between events and states (i.e. fluents). Time is treated as
another argument. All the arguments are expressed through a proposition identifier, time
among them, therefore the temporal qualification method here is a sort of token arguments
method. Some relevant features, however, are less developed due to the bias towards the



‘ Allen’s Interval-based Temporal Logic ‘

Time Ontology Units: Interval
Relations: { 13 Qualitative Interval Relations }
Time Theory Interval Existence

Interval Relations Exclusivity
Interval Transitivity Axioms

Temporal Constraints Formalism: Interval Algebra (IA)
Algorithm: TA Path-Consistency

Temporal Qualification Temporal Reification

Temporal Incidence Theory | TIPs: {holds,occurs,occurring}

Axioms: fluents homogeneity, events solidness

Underlying language First order logic

Figure 4: Description of Allen’s temporal logic.

specific application: the time unit is fixed to days, only few point-to-point relations are
considered (some temporal relations such as “follows” or “immediately” are mentioned but
not supported), and issues such as temporal constraints and temporal incidence are not
considered at all.

KRIP-2 [35] is a system for legal management and reasoning in patent law whose
language supports temporal representation. The ontology is also based on instants and
periods, and includes both convex metric and qualitative interval temporal constraints.
Events are qualified with time by using the form

event(Id, class, conditions, time)

Although Id looks like a token symbol, it is not used for temporal qualification since time
is also an argument.

These temporal representation approaches turn out to be adequate for the purposes of
the system they are defined in. However, as a general approach to temporal representation
in law they lack of some of the following: (i) an explicit identification of requirements from
legal domains, (ii) a consideration of the results in temporal reasoning in Al, and (iii) a
rational decision on each of the issues involved in a temporal representation framework. In
previous sections we have already gone over (i) and (ii). In next section we go over (iii)
but, before that, we analyze two pieces of work that do take care of these three issues.

The first is the event calculus (EC) [25], a temporal database management framework
specified in PROLOG. Although not specifically intended for legal reasoning, EC has been
used in several legal formalizations [39, 6]. According to the above features, EC is described
as follows:



‘ Event Calculus ‘

Time Ontology Units: Instant, period
Relations: {<, =, >}

Time Theory Not defined

Temporal Constraints Not defined

Temporal Qualification For fluents: Temporal reification
For events: Token arguments

Temporal Incidence Theory | TIPs: {holds,holds_at}
Axioms: holds homogeneity

Underlying language PROLOG

The second is presented in the context of the Chomexzpert system [27, 36], an application
on the Canadian Unemployment Insurance Law. The features of the temporal representa-
tion language, called EXPERT/T, are summarized as follows:

\ EXPERT/T \
Time Ontology Units: Instant, Period
Relations:  Qualitative point, qualitative interval,
Qualitative point-interval, absolute dates
Time Theory Not defined
Temporal Constraints Point and Interval Algebras
Unary metric (absolute dates)
Temporal Qualification Temporal reification
Temporal Incidence Theory | TIPs: {holds_on,occurs_at}
Axioms: Not defined
Underlying language PROLOG

Although both works start from an analysis of temporal representation requirements,
none of them identifies repeated temporal references, multiple time levels and modularity
as relevant issues to address. This is the reason why some of the decisions made on the
temporal features are not the most well-suited for formalizing legal texts. Both proposals
(in EC only for fluents) use temporal reification as temporal qualification method. In next
section we give a number of reasons to prefer the token arguments approach. Both use
PROLOG as underlying language. A shortcoming of languages purely based on logic (logic
programming among them) is their inefficiency in handling constraints. Proof-driven infer-
ence procedures turn out to perform poorly in constraint processing. The integration of a
constraint specialist seems the natural way to overcome this problem. EC does not provide
any “machinery” for processing temporal constraints. Although the period primitive is part
of the time ontology, period relations and interval algebra constraints (a la Allen) are not
supported. EXPERT/T processes qualitative constraints using Allen’s path-consistency
propagation algorithm [36], but no type of metric constraints is supported.

Our approach here is based on integrating temporal constraints and the appropriate
temporal qualification method into a logic-based language.

10



4 Legal Temporal Representation

In this section we present our proposal called LTR. We analyze each of section 3.1 features:
for each feature we select the choice that best fits the requirements identified in section 2.

4.1 Time Ontology: Instants, Periods and Durations as Dates

Primitive Units Most temporal expressions in legal domains are associated with a pe-
riod of time (e.g. “an offer being effective” in example 1, or the “qualifying” and “benefit”
periods in example 2). Moreover, these expressions are often related by period relations
such as “a period of validity of an offer happens during its period of existence” or “the
qualifying period immediately precedes the benefit period”. Hence, it is natural to include
the period as a time primitive. Do we also need instants? A brief analysis of legal texts
yields several cases where the notion of instant appears:

1. The endpoints of the periods above are naturally associated with instants such as the
moment where “the offer becomes effective” or the time as of which “the contract is
no longer valid”.

2. Some events such as “the offer reaches the offeree” are viewed as instantaneous. These
are called instantaneous events.

3. Norms often involve conditions about the state of a certain fluent at a certain instant.
For example, “If ...and the offer is not withdrawn at the moment when it reaches
the offeree and ... then ...”. Notice that, even if the “reach” event is modeled as

durable, the condition may still refer to the instant at the end of that period.

4. Whenever metric temporal relations are involved, they are often stated as constraints
between instants, (e.g. “a document sent by mail reaches its destination between 3
and 5 days later”).

Besides instants and periods, since legal domains involve numeric relations the duration
unit is also needed.

In practice, time in legal domains is expressed in clock/calendar units. Accordingly we
define our instant, period and duration constants in terms of dates, where a date is defined
as an indexed sequence of values for clock/calendar units:

date = [second’’|[minute’ |[hourh|[dayd][weekw][monthm][yeary]

For example, 00°’15°21h2d10m96y, 00°°15°21h, 21h2d10m96y, 10w96y, 96y are well-
formed dates. Some convenient shorthands are clock times (e.g. 00:15:21) and calendar
dates (e.g. 2/10/96). Dates are used as both instant and duration constants. Period
constants are defined as ordered pairs of dates. We use the conventional notation ()/[] to
specify open/closed intervals. In addition, a set of indexed symbolic constants (i1,i2,
...pl,p2, ...) is included for each unit to express times not associated to any specific
temporal proposition.

11



Granularity The adequate time granularity may vary from one legal context to another,
yet the basic structure of time and the properties of temporal constraints do not change.
We address this issue by allowing the user to select the appropriate granularity. Date
constants will be interpreted as either an instant or a period according to what is specified
by the directive Granularity() which takes a clock/calendar unit as its only argument.
The issues of combining various granularities or dynamically changing among from one
granularity to another are not addressed.

Primitive Relations Our proposal is based on the following primitive temporal rela-
tions: the 3 qualitative point relations <, = and -, the 5 qualitative point-interval relations
Before, Begin, €, End, After, the 13 qualitative interval relations,

A Before B B After A — ——
A
A Meets B B Met by A —
A
A Overlaps B B Overlappedby A ——
A
I B

A Starts B B Started by A

d>|

s}

A During B B Contains A

Ud|

ES

A Finishes B B Finished by A4

Ud|a>|

A Equal B B Equal A

and the duration relations = and € used to express unary constraints only? (e.g.
duration(tt1)=52w, begin(tt2)-end(tt1)€[3w,4w]). Binary duration constraints are
an issue of current research [33].

Primitive Functions We define a set of logical functions between temporal units. Some
of them are just the functional version of a temporal relation above:

Begin, End :  period — instant
0,0,D,d : instant X instant +— period
Duration: period — duration

Besides, a set of interpreted'® temporal functions is required in practice. These functions
are not involved in the term unification process but they are computed at inference time.
This set includes functions such as the following:

o Date arithmetics, e.g. +: date X date — date
e Date predicates, e.g. is_holiday : date — {t/f}

o Date operations, e.g. next _holiday : date — day

9Although the relations are binary, only one of the arguments will be a duration variable.
OTnterpreted functions are also referred as built-in functions or operators.
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o Date transformations, e.g. week of : date — week
o Date set operations, e.g. nth,latest,shorter of : date-set — date

A list of them is given in [50].

Time Theory Provided with the set of dates as our underlying model of time, the only
structural property of time that demands a specific discussion here is the dense/discrete
one. Dense models are required in domains where continuous change needs to be modelled
such as qualitative physics. This is not the case of legal domains where the relevant changes
are (viewed as) discrete (e.g. “signing a contract”, “receiving an offer”, “interruption of
earnings”, ...) and the dates set has a basic, indivisible granularity. Therefore we adopt
a discrete model of time which has two consequences. At the ontological level, we add two
instant relations that are exclusive of discrete models: Previous, Next: instant X instant'!.
At the axiomatics level, we take a discrete time theory. It is based on ZP [46], a simple
instant-period theory that accepts both discrete and dense models, plus few discreteness

axioms. Both sets of axioms are given in appendix A.

The “Immediate” Relation Immediate is a difficult temporal term to characterize
because its meaning may vary from one context to another. It may mean “in few seconds”
or “in few hours”. Even in a fixed context, it may not have a precise interpretation. Our
proposal is based on regarding immediate as a qualitative relation somewhere between
Previous(Next) and <(>). This loose connection is formally specified by the following
axioms over instants:

Im; ¢ ImmediateAfter i =i <

Im, ¢ ImmediateBeforei =i < i’

Img ¢ Previous i = ! ImmediateBefore i’
Im, ¢ Next ! = i ImmediateAfter ¢/

When Immediate is adjoined to period relations, it is interpreted as one of the following
two:

1. The period relation Meets(Met _by).
2. The first (last) of the set of periods that follow (precede) the current period.

The appropriate choice will depend on the context. It is left to the responsibility of the
language user. We formalize some instances of immediate relations in the examples below.

HUThese relations will also be used in their functional form as time operators (e.g.
begin(tti)=Next(end(tt2))).

13



4.2 Temporal Constraints

Given the indefiniteness of temporal relations in some legal domains'? and the fact that
existing temporal constraint algorithms scale down well in general, our framework includes
almost all kinds temporal constraints:

e Qualitative constraints between instants (e.g. begin(ttl) =< begin(tt2))

e Metric constraints over instants (e.g. begin(tt2)-begin(ttl) €
{[2d,3d] [1w,2w]1})

e Qualitative constraints between periods (e.g. period(tt3) Contains Overlaps
period(tt2))

e Qualitative constraints between an instant and a period (e.g. instant(tt2) €
1/0ct/95)

e Unary metric constraints over durations (e.g. duration(P1)=52w)

Besides representing indefinite temporal relations, temporal constraints can be used
to maintain a partial representation over time. Consider, for instance, a fluent £ that is
holding now. Unless we have specific information, it may cease holding any time as of the
current time. It can be expressed by a constraint similar to end(f) € [now,+ inf].

Temporal constraints are either unary or binary and in both cases the syntax has the
form

time-term temporal-relation time-term

where the types of the time terms agree with the signature of the temporal relation. In
unary constraints, one of the time terms is always ground. The formal syntax of the
constraints is given in [50].

Temporal constraints are processed by representing them in a constraint network and
applying the available efficient techniques for processing different classes of constraints:
qualitative point [20, 44, 19, 15], qualitative interval [44] and metric point [14, 38]. Also
some progress has been achieved in combining metric-point and interval algebra constraints
[31, 23]. This currently is an area of active research and forthcoming results can be straigh-
forwardly integrated within our framework.

4.3 Temporal Qualification: Token Arguments

Since repeated temporal references are pervasive in legal domains, temporal qualification
methods based on tokens are more adequate. Among the two token-based methods

12 Although in most legal applications only some specific classes of temporal constraints are involved,
different applications require different types of constraints. Moreover, some few domains (such as labor
law) where the temporal issue is paramount and data may be imprecise, involve all kinds of temporal
constraints.
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proposed in the literature, token arguments is better suited to our needs here as we shall
see in a moment. In token arguments, something like an offer of the contract ¢ from a to b
is formalized as offer(c,a,b,...,tt1) where tt1 is a constant symbol of the new token
sort!3. We call these atomic formula token atoms. To improve readability we emphasize the
role of the token argument with some syntactic sugar: instead of offer(c,a,b,...,ttl)
(where tt1 is a token term) we shall write

ttl : offer(c,a,b,...)

A set of functions, called token temporal fuctions'?, that map tokens to their relevant
times is defined. For example, begin(tt1) denotes the initial instant of the token denoted
by tt1 and period(tt1) its period. TIPs are used to express that the temporal proposition
is true at its associated time(s) as discussed below in section 4.4.

The token arguments method has several advantages:

1. Token symbols can be directly used as an argument of other predicates. In the above
example, tt1 can be used in dispatch(ttl,a,b,...) to express that the offer tt1
is dispatched from a to b.

2. Different levels of time are supported by diversifying the token temporal functions.
For instance, we may have begin v(tt1) to refer to valid time and begin_t(tt1) to
refer to transaction time. At the implementation level, a different temporal constraint
network instance is maintained for each time level.

3. Token symbols can be used as the link to other knowledge modalities. For instance,
in a multiple agents domain, the degree of belief of a proposition p(...) by an agent
a can be represented by belief(a,ttl) where ttl is a token from ttil:p(...).
Deontic modalities can be represented by predicates (such as 0 for obligation and P
for permission) that take a token as an argument. Furthermore, we can distinguish
between the time where the deontic relation holds and the time of the object in the
relation. For example, consider that a legal person a is obligated to offer a contract
c to b. We represent the offer by ttl:offer(c,a,b,...), its relevant instants by
begin(ttl) and end(ttl), the obligation by tt2:0(a,tt1) and the beginning and
end instants of the obligation by begin(tt2) and end(tt2).

To increase notation conciseness we define syntactic sugar that allows omitting token
symbols whenever they are not strictly necessary (i.e. whenever there are no references to
them). There are two cases. In the first case two or more token atoms are collapsed into
one. For instance, the facts

13The idea behind token arguments is similar to the Compound Predicate Formula approach [54] when
applied to temporal pieces of information.
4To be distiguished from the temporal functions in section 4.1 with similar names but different signature.
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ttl: offer(c,a,b,...)
tt2: withdrawal(ttl)
tt3: reach(tt2,b)

in a rule that does not contain other references to tt2, can be rewritted as

ttl: offer(c,a,b,...)
tt3: reach(withdrawal(ttl),b)

The second case is related with temporal incidence expressions and is explained in next
subsection.

4.4 Temporal Incidence

We introduce the TIP holds to express holding of fluents (e.g. holds(tt1)) and occurs
to express occurrence of events. We call these atomic formulas incidence atoms.

Holds Incidence There is a common agreement in the literature about the homogeneity
of holding of fluents [30, 2, 41]. Since our ontology includes both instants and periods, the
holding of a fluent over a period should not constrain its holding at the period endpoints to
avoid the dividin ginstant problem [49]. These properties are captured by a simple axiom
which, expressed in temporal reification form, is as follows:

Vf :: fluent, p :: period (holds_on(f,p) = Vi ::instant (Within(s,p) = holds_at(f,7)))
An important convention we make at this point is what we call token holds mazimality:
A fluent token denotes a maximal piece of time where that fluent is true.
A consequence of this convention is the following Fvent Calculus axiom:

“Any two periods associated with the same fluent are either identical or dis-
joint.”

In practice, one is interested in knowing whether the current token database entails that a
certain fluent is true at a certain time. To this purpose we define the following TIPs:

holds_on(fluent, period)
holds_at (fluent, instant)

Notice that these are neither syntactic sugar of the above nor temporal reification TIPs,
but they are new TIPs with the following existential meaning. Given a fluent f, a period
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p and an instant ¢

holds_on(f, p) =
dTT TT:fAholds_on(TT) A
p During Starts Finishes Equal period(77)
holds_at(f, i) =
dTT TT:fA (holds_on(TT) A i Within period(TT)V
holds_at(TT)A ¢ = instant(TT))

where T'T is a variable of the fluent token sort.

Occurs Incidence There is no common agreement on the characterization of the occur-
rence of events [2, 41, 17]. As a matter of fact, no evidence on the need for any specific
theory of events is found in practice. However, we keep occurs TIP to express the actual
occurrence of an event and, thus, to allow describing events whose occurrence is unknown
(e.g. to express the possibility or the obligation for that event to occur).

Some syntactic sugar for incidence expressions is defined to omit token symbols. The
expression

TT:become-effective(...)
Occurs(TT)
instant (TT)=I

will be written as
Occurs{(become-effective(...),I)

The formal syntax for incidence atoms is given in [50].

4.5 Underlying Language

Our proposal is independent of the underlying language, as long as it is a many-sorted
language. The sorts ser must include our three temporal sorts, (namely instants, periods
and durations), and the two tokens sorts (namely fluent and event tokens).

In this section we address few additional relevant features:

Negation Negation of token and incidence atoms will be handled by the standard mech-
anism of the underlying language. Negation of temporal constraints is less problematic
since temporal constraints exhibit the following nice property:

Proposition 1 In a constraint language that does not restrict non-convex constraints, any
negated constraint can be expressed as an equivalent non-negated constraint form.
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For example =(t < t') =t > ¢, or =(t =t € {[3,5]}) = t -+t € {[-0,3),(5,+o0]}.
Hence negated constraints will be asserted and queried by regular constraint propagation
and entailment.

Token Sets Some applications require dealing with sets of temporal elements!®. For
instance, let us consider the following piece of text from example 2:

.(b) the period that begins on the commencement date of an
immediately preceding benefit period and ends with the end of the week
preceding the commencement of a benefit period under subsection 9(1).

Since for a given person there might be several benefit periods, a possible interpretation
for “immediately preceding benefit period ...” 1is, as noted in section 4.1, “the last of
all benefit periods before ...”. Thus, we need to refer to the set of all those “benefit
period” tokens that are Before ... Coping with the notion of set requires higher order
expressiveness. Some research has been done on extending first order languages in this
direction [28, 26, 1, 11, 24, 12]. We restrict the development here to the context of a
token-based approach where the set notion is used to specify sets of temporal tokens that

satisfy a certain condition. The syntax we propose is as follows®:

token set ([temporal atom]™)

where temporal atom can be either a token atom, an incidence atom or a temporal con-
straint. The token set operator binds the token variables appearing in the token atoms (e.g.
the variable TT3 in TT3: benefit-period(TT1)) to all those tokens of that relation that
satisfy all the conditions inside the form. For instance, the example above is formalized as

token set( TT3: benefit-period(TT1)
period(TT3) Before Meets period(TT2) )

We define a number of practical operators on sets of tokens. For instance, latest
denotes the last token of that set according to the temporal ordering. These operators can
be applied on token set variables (e.g. latest(TT3)). Some of these operators admit an
alternative first order formulation by splitting the conditions into different rules and using
negation, however this approach is clearly impracticall”.

15This issue is not included in the requirements list (section 2) because the notion of set is not strictly a
temporal representation feature, but the notion of set of temporal elements is relevant here as we discuss
in this section.

16We are not particularly happy with this syntax since does not follows a pure declarative style, but it
turns out to be adequate in practice.

17As an exercise, you may try to use this approach to specify the operator 4th which selects the 4th
token that satisfies certain conditions.
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Token Attributes The token arguments method allows to detach time from its tem-
poral proposition. The same can be done for the remaining attributes of the propos-
tion to enhance language flexibility. For example, we can refer to the offeror of tt1:
offer(c,a,b,...) by offeror(tt1l). Now attribute names are represented explicitly. It
requires (i) declaring the attributes for each predicate,

Attribute(what,offer)
Attribute(offeror,offer)
Attribute(offeree,offer)

for what we shall use the shorthand

Attributes(offer,{what,offeror,offeree,...})

and (ii) referring to the attributes of a particular token. Our tt1l: offer(c,a,b,...)
can be regarded as a shorthand!® for

what (ttl1)=c
offeror(ttl)=a
offeree(ttl)=b

Summary The set of choices that defines our proposal is summarized in the following
table:

\ LTR |
Time Ontology Units: Instants, periods, durations

with clock/calendar forms as constants.
Relations: {<, begin, end,

Next, Previous,

ImmediateBefore, ImmediateAfter}

Time Theory ZP axioms + discreteness axioms + Im;.4 axioms
(The axioms are given in appendices A.1 and A.2)

Temporal Constraints Combined (metric) Point — Interval Constraints

Temporal Qualification Token arguments
Temporal Incidence Theory TIPs: {holds,occurs,holds_at,holds on}
Axioms: holds and holds_on homogeneity

8The translation will take the order of the attributes from an explicit declaration supported by the
undelaying language.
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5 Examples

In this section we illustrate the application of our approach as we revisit the two examples
introduced in section 1. We take a rule-based language as underlying language without
making any assumption about the inference regime. A set of facts in both the body and
the head of a rule is interpreted as a conjunction. The marks [[...]] indicate pieces of
text that have not been formalized because either their meaning is not clear, their main
emphasis is not temporal or they are merely redundant. The mark ) Implicit indicates
pieces of formal knowledge that are not directly derived from the legal text. Ontological
elements resulting from a conceptualization process are emphasized in bold. Temporal
relations are underlined.

5.1 Formalizing the CISG Example

The CISG is intended to provide a normative frame for international commerce. Part II
of the law is devoted to the formation of contracts. For instance, it is used to determine
when a contract is concluded. Queries like this can be answered in the LTR formalization
we present next.

The predicate attributes used in the example are:

Attributes(contract,{offeror,offeree,class,type,qp-provision})
Attributes(offer, {what ,offeror,offeree,is-irrevocable,offer-begin, offer—end})
Attributes(acceptance,{what})

Attributes(effective,{what})
Attributes(concluded,{what})
Attributes(withdrawn,{what})
Attributes(accepted,{what})

Attributes(become-effective,{what})
Attributes(become-concluded,{what})

Attributes(reach,{what,who})
Attributes(dispatch,{what,who,to-whom,type,stamped-date})
A granularity of days might seem fine enough for this example, however some occurrences
of the “immediate” relation require moving to a finer granularity:

Granularity(second)

A law article is formalized as (a number of ) rules that express the relations between occur-
rence of events under certain conditions and their effects in terms of the holding of derived
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fluents. For instance, in example 1, “Article 15(1) An offer becomes effective when it
reaches the offeree.” is formalized as

If TT1: offer(C,0R,0FE,...)
TT2: reach(TT1,0E)
Occurs(TT2)
—Holds_at(withdrawn(TT1),instant (TT2)) % Implicit

then Occurs(become-effective(TT1),instant (TT2))

If TT2: become-effective(TT1) ¥ Implicit
Occurs(TT2)
then Holds(effective(TT1),(instant(TT2),.))

Next we include few additional interesting articles also from CISG part II.

Article 18(2) An acceptance of an offer becomes effective at the moment the indi-
cation of assent reaches the offeror. An acceptance is not effective if the indication
of assent does not reach the offeror within the time he has fixed [[or, if no time is fixed,
within a reasonable time, due account being taken of the circumstances of the transaction,
including the rapidity of the means of communication employed by the offeror.]]

If TT1: offer(_,0R,_,_,0Begin,0End)
TT2: acceptance(TT1)
TT3: reach(TT2,0R)

Occurs(TT3)
instant(TT3) € [OBegin,OEnd]
Holds at(accepted(TT1),instant (TT3)) % Implicit

then Occurs(become-effective(TT1),instant (TT3))

Implicit from Article 18(2) When an acceptance of an offer of a contract becomes
effective the contract becomes concluded.

If TT2: become-effective(acceptance(offer(TT1,...)))
Occurs(TT2)
then Occurs(become-concluded(TT1), instant(TT2))

If TT2: become-concluded(TT1) % Implicit
Occurs(TT2)
then Holds(concluded(TT1),(instant(TT2),.))
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Article 18(2) (cont) An oral offer must be!? accepted immediately [[unless the
circumstances indicate otherwise.|]

If TT1: offer(...)
TT2: dispatch(TT1,_,_,oral,_,.)
Occurs(TT2)

then offer-begin(TT1)¢+ instant(TT2)
offer-end(TT1)+ ImmediateAfter(instant(TT2))

Article 20(2) Official holidays or non-business days occurring during the period for
acceptance are included in calculating the period. However, if a notice of acceptance
cannot be delivered at the address of the offeror on the last day of the period because
that day falls on an official holiday or a non-business day at the place of business of the
offeror, the period is extended until the first business day which follows.

If TT2: offer(...)
Is holiday(offer-end(TT2))
then offer-end(TT2)¢ next holiday(offer-end(TT2))

Y would be sufficient to answer the intended queries. The

Temporal database projection?
bottom-up inference procedure would make an intensive use of the specialized modules for
(1) constraint processing and (ii) token management. The result will be a temporal map
composed of instants and periods for the instances of events and fluents, together with the
temporal constraints holding among them. For example, given the input formalized by the

following facts

ttl: contract(a,b,sale,machine,_)

tt2: offer(ttl,a,b,_,[—oco,+oo],[—00,+oo]), instant (tt2)€c1/0ct/95
tt3: dispatch(tt2)

tt4: reach(tt2,b), instant(tt4)c8/0ct/95

tt5: withdrawal(tt?2)

tt6: dispatch(tt5,a), instant(tt6)€7/0ct/95

tt7: reach(tt5,b), instant(tt7)€11/0ct/95

tt8: acceptance(tt2)

tt9: dispatch(tt8,b), instant(tt8)€10/0ct/95

tt10: reach(tt8,a), instant(tt10)€12/0ct/95

the time map shown by figure 5 would be generated. The query “Is the contract concluded”
will be affirmatively answered by YES, as of October 12 ’95. The sequence of rules

9Notice that “must be” here does not denote obligation but a temporal constraint.
20As in the TMM system [13, 37] for example.
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involved in deriving token tt1.2: concluded(tt2) can be easily recorded and returned
as justification.

tt9: dispatch(tt8,b)
tt8.1: draft(tt8)

.tth: reach(tt8, a)
tt8.2: effective(tt8)

tt8: acceptance(tt2)

t7: reach(ttS;: b)

®

tt6: dispatch(tts, a)

®

tt5: withdrawal (tt2)

L
f ; @' rexn(ti2,b)
‘tt3: dispatch(it2)

tt2.1: draft:(ttZ) tt2.2: effective(tt2) tt2.3: accepted(tt2)

tt2: offer(tt1,ab,...)

tt1.1: draft(tt1) tt1.2: concluded(ttl)

tl: contra:ct(a,b&ale, ma::hine, )

\
I
|
I
|
T
|
T
|
Octl - Oct7 Oct 8 Oct 9 Oct 10 Oct 11 Oct 12

Figure 5: CISG example.

5.2 Formalizing the Canadian Unemployment Insurance Law Ex-
ample

A key section of the Canadian Unemployment Insurance Law [36] is intended to determine
whether a person is eligible for benefits or not. It involves determining a qualifying period
(the period during which the person has been employed) and a benefit period (the period
during which the person should receive benefits).

The following predicate attributes need to be declared:

Attributes(insured-person,{...})
Attributes(benefit-period,{whom})
Attributes(qualifying-period,{whom})
Attributes(interruption-of-earnings,{what})

Attributes(initial-claim,{what})

For a proper formalization of the temporal aspects of this act, a granularity of days is fine
enough.
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Granularity(day)

Next we show the sections that address the assesment of the benefit and qualifying periods
and their formalization in LTR:

Section 7(1) [...] the qualifying period of an insured person is the shorter of: (a)
the period of fifty-two weeks that immediately precedes the commencement of a benefit
period under subsection 9(1), and

(b) the period that begins on the commencement date of an immediately preceding benefit
period and ends with the end of the week preceding the commencement of a benefit
period under subsection 9(1).

If TT1: insured-person()

TT2: benefit-period(TT1)

duration(P1)=52w

P1 Meets period(TT1)

token set( TT3: benefit-period(TT1)

period(TT3) Before Meets period(TT2) )

begin(P2)=begin(latest (TT3))

end (P2) <—end_of week (week before(week of (begin(TT2))))
then TT5: qualifying-period(TT1)

period(TT5) <shorter of ({P1,P2})

Section 9(1) [...] A benefit period begins on the Sunday of the week in which
(a) the interruption of earnings occurs, or

(b) the initial claim for benefit is made,

whichever the later.

If TT1: insured-person()
TT2: interruption-of-earnings(TT1)
Occurs(TT2)
TT3: initial-claim(TT1)
Occurs(TT3)
then TT4: Dbenefit-period(TT1)
begin(TT4) <—sunday_of (week of (latest_of (instant (TT2),instant(TT3))))
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6 Conclusions

We explored the representation of time and temporal information in legal domains in the
tradition of using logic to formalize law. We propose LTR, a temporal representation
framework described by the following choices on the temporal reasoning features:

\ LTR

Time Ontology Units: Instants, periods, durations
with clock/calendar forms as constants.

Relations: {<, begin, end,
Next, Previous,
ImmediateBefore, ImmediateAfter}

Time Theory ZP axioms + discreteness axioms + Im;.4 axioms
(The axioms are given in appendices A.1 and A.2)

Temporal Constraints Combined (metric) Point — Interval Constraints

Temporal Qualification Token arguments

Temporal Incidence Theory TIPs: {holds,occurs,holds_at,holds on}

Axioms: holds and holds_on homogeneity

Our approach is independent of the underlying representation language and the specific
legal reasoning application. We discussed its adequacy wrt. the requirements identified in
legal domains. LTR is currently being used within a rule-based language in the formaliza-
tion of the Convention for International Sale of Goods.

In this work we did not address the issues of (i) representing periodic occurrences, (ii)
temporal non-monotonic reasoning, and (iii) handling time of legal statutes. For instance,
tasks that involve meta-reasoning about the validity of statutes and laws over time are out
the scope of our approach. This is matter of our current research.
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A A Discrete Theory of Time
A.1 1IP Theory

TP is defined upon a structure composed of two sorts of symbols, instants (Z) and periods (P)
which are formed by two infinite disjoint sets of symbols, and three primitive binary relation
symbols <:Z x 7 and begin,end:Z x P.

The first order axiomatization of ZP is as follows:

P, (i <) IP7 1 i begin(i,p)

IP, i< = (/<1 IP; > 3i end(7,p)

IP; <INV <i"=i=<7" IPgq begin(i,p) Abegin(d,p) = i=1
IP, i<idVvi<ivi=7 IPg> end(:,p) Aend(i,p) =t =1

IP5; 3¢ (7 <79) IPy i< = 3 p (begin(i,p) Aend(¢,p))
IP5., 3¢ (i< i) IPyo Dbegin(i,p) A end(i,p) A

IPg  Dbegin(i,p) Aend(d,p) = i< A begin(i,p) Aend(V,p)) = p=17p

IP; =IP,4 are the conditions for < to be a strict linear order —namely irreflexive, asymmetric,
transitive and linear— relation over the instants?'. IP5 imposes unboundness on this ordered set.
IPg orders the extremes of a period. This axiom rules out durationless periods which are not
necessary since we have instants as a primitive. The pairs of axioms IP7 _ and IPg _ formalize the
intuition that the beginning and end instants of a period always exist and are unique respectively.
Conversely, axioms IPg and IPg close the connection between instants and periods by ensuring
the existence and uniqueness of a period for a given ordered pair of instants.

See [46] for a characterization of the models and relation with other time theories.

A.2 Discreteness Axioms
The discreteness axioms under an unbounded time are as follows:

IPg4;1 7 Previous i/ < i/ Next ¢

IPg4i2 ¢ Previous i =1 < ¢

IPg4i3 3¢ ¢ Previous ¢

IPg;s: 3¢ @ Next ¢

IPg4i4 ¢ Previous ¢ = -3¢ (¢ < " < ¢')

ZINotice that IP; is actually redundant since it can be derived from IP,. We include it for clarity.
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